Патент на изобретение №2393258
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПЛАВ НА ОСНОВЕ ТИТАНА
(57) Реферат:
Изобретение относится к металлургии сплавов на основе титана, используемых для изготовления крупногабаритных сварных конструкций. Предложен свариваемый сплав на основе титана, содержащий, мас.%: алюминий 4,5-6,2, ванадий 1,0-2,0, молибден 1,3-2,0, углерод 0,06-0,14, цирконий 0,05-<0,10, кислород 0,06-0,13, кремний 0,02-<0,10, железо 0,05-0,25, титан остальное, при выполнении следующих соотношений: [С]+[О2]
Изобретение относится к цветной металлургии, в частности к созданию свариваемых высокопрочных сплавов на основе титана, предназначенных для изготовления крупногабаритных сварных конструкций, используемых в судостроении и других отраслях промышленности. Известны высокопрочные сплавы на основе титана ВТ8, ВТ9, ВТ14, ВТ22 и ВТ23 по ОСТ1 90013-81. Эти сплавы имеют достаточно высокий уровень прочностных свойств, но недостатками их являются: невозможность использования в крупногабаритных сварных конструкциях, так как при термическом цикле сварки заготовок толщиной более 5 мм происходит резкое снижение пластичности ( В качестве прототипа предложен состав сплава на основе титана, содержащий мас.%: алюминий 0,25-7,5, ванадий 0,1-30,0; молибден 0,1-30,0; углерод до 0,3, цирконий 0,1-10,0; кислород до 0,3, кремний 0,1-1,0; железо 0,1-2,0; титан остальное (GB 785293А, С22С 14/00, 23.10.57) [2]. Из альтернативных вариантов составов сплава в качестве прототипа выбран сплав, количественный и качественный состав которого соответствует количественному и качественному составу заявляемого сплава. Пластичность сварных соединений в сплаве-прототипе оценивали по радиусу изгиба образцов из сварных пластин толщиной 4,5 мм, который не превышал 1,5-2,0Т [2]. Недостатком этого сплава являются низкие характеристики пластичности и ударной вязкости (KCU, ату, Техническим результатом предлагаемого изобретения является создание высокопрочного свариваемого сплава для изделий с толщиной более 150 мм, обладающего более высокими характеристиками пластичности металла сварного шва ( Технический результат достигается за счет того, что в сплаве, содержащем алюминий, ванадий, молибден, углерод, цирконий, кислород, кремний, железо и титан, компоненты находятся при следующем соотношении, мас.%:
и при выполнении следующих соотношений: [С]+[О2] [Мо]+0,5[V] Выбранное значение [Мо]+0,5[V] При соотношении [Мо]+0,5[V] более 3,0 наблюдается увеличение структурной неоднородности и снижение пластичности металла сварного шва. Выбранное значение суммы углерода и кислорода в пределах [С]+[О2] Изоморфный Содержание углерода ограничено выбранными пределами, так как при содержании более 0,14% он может выделиться по границам зерен в виде включений, которые на 30-40% снижают пластичность сварного шва, при содержании менее 0,06% падает прочность сплава [1]. Содержание кислорода понижено по сравнению с известным сплавом для обеспечения пластичности сварных соединений и повышения ату. При повышении содержания кислорода до 0,20% – ату снижается на 50% [3]. Выплавляли слитки по прототипу и заявляемому сплаву составов (1, 2, 3), которые затем ковали в размер 150×300×1000 мм. Сварку пластин размером 150×300×300 осуществляли аргонодуговым методом. Образцы вырезали из сварного соединения и основного металла для определения механических свойств основного металла и сварного шва, коэффициента интенсивности напряжений. Коэффициент интенсивности напряжений определяли в соответствии с ГОСТ 9.903 и МР185-85. Испытания проводили по схеме трехточечного изгиба на воздухе и морской воде. Надрез выполняли по основному металлу и сварному шву. Состав предлагаемого и известного сплавов и результаты испытаний приведены в таблицах 1 и 2.
Представленные результаты показывают, что механические свойства предлагаемого сплава, как основного металла, так и металла сварного шва близки и превосходят аналогичные характеристики известного сплава. Результаты определения коэффициента интенсивности напряжений на воздухе и коррозионной среде показывают, что предлагаемый свариваемый сплав превосходит известный сплав. Предлагаемый сплав позволяет создавать сварные конструкции толщиной более 150 мм. Исключение термической обработки после сварки позволит снизить себестоимость изготовления крупногабаритных сварных конструкций для энергетических комплексов и судостроения на 10-20%. Литература 1. Б.Б.Чечулин, С.С Ушков, И.Н.Разуваева, В.Н.Гольдфайн. Титановые сплавы в машиностроении. Л.: Машиностроение 1977, стр.41-47. 2. Роспатент, Форма 3. В.Н.Моисеев, Ф.Р.Куликов и др. Сварные соединения титановых сплавов. М.: Металлургия, 1978, стр.71, 112-115.
Формула изобретения
Свариваемый сплав на основе титана, содержащий алюминий, ванадий, молибден, углерод, цирконий, кислород, кремний, железо и титан, отличающийся тем, что компоненты находятся при следующем соотношении, мас.%:
при выполнении следующих соотношений: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||