Патент на изобретение №2393028
|
||||||||||||||||||||||||||
(54) УСТРОЙСТВО ДЛЯ СОНОПЛАЗМЕННОЙ СТИМУЛЯЦИИ ФИЗИКО-ХИМИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В ЖИДКОЙ СРЕДЕ
(57) Реферат:
Изобретение относится к области специальных физических и химических технологий и может быть использовано там, где требуется разложение жидкой среды на составляющие элементы, например при детоксикации и дебактеризации, при переработке нефтесодержащих фракций. Техническим результатом изобретения является повышение интенсификации процесса. Устройство для соноплазменной стимуляции физико-химических и технологических процессов в жидкой среде включает рабочую проточную камеру, предназначенную для создания в ней зоны кавитации, поток жидкости в которую подается через сужающийся цилиндрический канал, при этом рабочая камера дополнительно снабжена источником электромагнитного излучения, выполненного с возможностью создания в зоне кавитации рабочей камеры как переменного, так и постоянного поля напряженностью 1÷10 кВ/см, а на выходе сужающегося цилиндрического канала расположено излучающее сопло, обеспечивающее режим потока, отличный от ламинарного. 3 з.п. ф-лы.
Изобретение относится к области специальных физических и химических технологий и может быть использовано в различных сферах человеческой деятельности, где требуется разложение жидкой среды на составляющие элементы, например, при детоксикации и дебактеризации, при переработке нефтесодержащих фракции. В перспективе изобретение может быть использовано для получения водорода. Известен способ ультразвуковой обработки материалов [а.с. СССР 561576], согласно которому в рабочей среде создают зону кавитации, а обработку упругими колебаниями осуществляют на ультразвуковой частоте и ведут ее в течение двух часов. Для реализации способа используют устройство, в котором рабочая камера и источник упругих колебаний выполнены как единое целое и изготовлены на базе кольцевого магнитострикционного преобразователя ЦМС-8, создающего в жидкой рабочей среде зону кавитации и работающего на одной ультразвуковой частоте Основным недостатком этого устройства является ограниченное его применение в различных технологических процессах из-за незначительной интенсивности создаваемых колебаний. Уровень кавитационного шума недостаточно высок, например, для разложения воды и получения из нее водорода или кислорода, по этой же причине устройство не обеспечивает надежного разрушения высоковязких сред. Вторым недостатком является большая продолжительность процесса в объеме рабочей камеры. Известна установка для осуществления способа подготовки нефти и/или нефтепродуктов к переработке [RU 2287355], включающая устройство для воздействия на движущийся поток перепадами давления, содержащее входной трубопровод с герметично установленным в его сечении многосопловым блоком, соединенным с цилиндрическим каналом и затем с расширяющимся диффузором, при этом отношение площади сечения цилиндрического канала к сумме площадей отверстий сопел на выходе из многосоплового блока характеризуется величиной от 2,1 до 5,9. К недостатку приведенного механического устройства относится то, что эффективность качественного и количественного изменения состава жидких сред зависит от количества кавитационных пузырьков на единицу объема. Указанный показатель ограничен тем, что в основе образования пузырьков заложено сужение в поперечном сечении потока жидкости, т.е. гидродинамическое сопротивление, поэтому интенсификация кавитационных процессов имеет предел по экономическим соображениям. Нашли развитие устройства для реализации способов активирования перерабатываемого сырья с использованием источников электромагнитного излучения. Компанией Electromagnetic Energy Corporation разработан физический способ переработки [US 5055180] путем последовательного извлечения фракций из углеводородного сырья с использованием электромагнитной энергии частотой 300 МГц÷300 ГГц. Недостатком способа является то, что степень разложения, по выходу светлых нефтепродуктов, недостаточно высока и зависит от напряженности электромагнитного поля. Известна установка по переработке нефтяного сырья [RU 2246525], включающая блок деструкции на базе двух и более независимо друг от друга работающих генераторов волнового поля, причем один генератор электромагнитного действия с излучающими антеннами в резонаторе, через который прокачивается сырье, выполнен со встроенным магнитострикционным и/или пьезоэлектрическим акустическим излучателем, другой акустический генератор кавитационного действия роторного типа и/или гидродинамического типа, конструктивно выполненный по принципу сопла Лаваля с акустическими резонаторами. Установка позволяет одновременно или последовательно воздействовать на деструктурируемое сырье волновыми электромагнитными и акустическими полями с энергией и частотами, соответствующими резонансным частотам и/или частоте колебаний молекул деструктурируемых органических соединений и/или соединения с последующим температурным воздействием в пределах атмосферной перегонки. Известно также [WO 0231084], что резонансную частоту подбирают набором катушек, установленных на транспортном трубопроводе коаксиально к сырьевому потоку. Недостатком является то, что установка позволяет проводить активирование как отдельную подготовительную операцию, а указанная в примерах мощность электромагнитного воздействия, равная 7 Вт, слишком мала, чтобы оказывать влияние на кавитационные процессы. При исследовании деструкции углеводородов в кавитационной области в присутствии электрического поля при активации водными растворами электролитов [А.С.Бесов, К.Ю.Колтунов, С.О.Брулев, В.Н.Кириленко, С.И.Кузьменков, Е.И.Пальчиков Письма в ЖТФ, 2003, том 29, вып.5, с.71-77] было установлено, что наложение сильного электрического поля напряженностью 10÷20 кВ/см на зону кавитации, создаваемую воздействием ультразвуковых колебаний, интенсифицирует процесс кавитации и позволяет в течение 10 минут дополнительно получить 1.5÷2.0% светлых нефтепродуктов. К недостаткам устройства относится относительно высокая напряженность создаваемого электрического поля. Это связано с тем, что интенсификация процесса кавитации лимитирована накоплением внутри кавитационных пузырьков легких продуктов деструкции углеводородов, что приводит к увеличению давления насыщенных паров и затрудняет тем самым возникновение новых электрических разрядов. Вторым недостатком является то, что для формирования в кавитационной области устойчивого объемного разряда авторы использовали водный раствор электролита. Наиболее близким к заявляемому по своей технической сущности является устройство для соноплазменной стимуляции физико-химических и технологических процессов, осуществляемых в жидкой рабочей среде с использованием энергии упругих колебаний [RU 2006135708] (прототип), включающее рабочую камеру в виде полой емкости, источник упругих колебаний, излучающее звено которого расположено в полости рабочей камеры, источник электропитания и соединенные с ним, по меньшей мере, два электрода, которые введены в полость рабочей камеры, отличающееся тем, что источник упругих колебаний выполнен работающим в частотном диапазоне 1-8000 кГц на одной или нескольких частотах, электроды установлены от излучающего звена на расстоянии, не превышающем длины волны упругих колебаний, распространяющейся в используемой рабочей среде, а источник электропитания выполнен в виде двух блоков, один из которых формирует напряжение поджигающего импульса в пределах 10-25 кВ и устанавливает его продолжительность в интервале 0.01-100 мкс, а другой формирует напряжение стабильного горения плазменного разряда, составляющее 50-300 В. За счет подбора акустических и электрических параметров устройство позволяет в значительной степени интенсифицировать кавитационные процессы, а комбинированием видов и количеств источников упругих колебаний достигается стабильное горение плазменного разряда, что в свою очередь позволяет стимулировать физико-химические и технологические процессы в жидких средах. Недостатком прототипа является то, что генерация упругих колебаний с помощью ультразвукового источника, излучающее звено которого расположено в полости рабочей камеры, не позволяет обеспечить равномерную плотность кавитационных пузырьков по сечению потока обрабатываемой жидкости. В этом случае получение высоких качественных характеристик конечных продуктов требует либо нескольких циклов, либо достаточно большого времени, от 5 до 20 минут, обработки единицы объема жидкой среды в замкнутом цикле. Таким образом, интенсификация процесса стимуляции физико-химических и технологических процессов ограничена. Технической задачей является конструктивное решение, позволяющее создать плазменный разряд в потоке жидкой среды. Настоящее изобретение направлено на изыскание технического продукта, позволяющего интенсифицировать физико-химические и технологические процессы и стимулировать их путем соноплазменного воздействия на непрерывный поток жидкости. Технический результат достигается тем, что предложено устройство для соноплазменной стимуляции физико-химических и технологических процессов в жидкой среде, включающее рабочую проточную камеру, предназначенную для создания в ней зоны кавитации, поток жидкости в которую подается через сужающийся цилиндрический канал, при этом рабочая камера дополнительно снабжена источником электромагнитного излучения, выполненного с возможностью создания в зоне кавитации рабочей камеры как переменного, так и постоянного поля напряженностью 1÷10 кВ/см, а на выходе сужающегося цилиндрического канала расположено излучающее сопло, обеспечивающее режим потока, отличный от ламинарного. Технический результат достигается также тем, что источник электромагнитного излучения соединен, по меньшей мере, с двумя электродами, которые введены в полость рабочей камеры. Возможно, что источник электромагнитного излучения выполнен в виде магнитрона, обеспечивающего возможность работы в СВЧ-диапазоне переменного поля. Желательно, что электромагнитное излучение генерируется источником в импульсном режиме продолжительностью 0.1-100 мкс и частотой 1÷10 кГц. Под действием электрического поля в образующихся кавитационных пузырьках происходят газовые электрические разряды. Это обусловлено тем, что при образовании кавитационного пузырька давление в нем не превышает давления насыщенных паров окружающей жидкости. В случае большинства жидких сред это давление настолько мало, что реализуются условия газового разряда даже при сравнительно небольших значениях электрического поля 1÷2 кВ/см. Образование газового разряда приводит к двум полезным эффектам. Прежде всего, при газовом разряде происходит электродинамический удар, в результате которого в жидкой среде распространяются гидродинамические волны, приводящие в свою очередь к образованию новых кавитационных пузырьков, т.е. происходит генерация упругих колебаний. С увеличением концентрации кавитационных пузырьков повышается и механохимическая активность кавитационной области в целом. Во-вторых, в газовом разряде под действием потока электронов образуются активные химические соединения: радикалы и ион-радикалы, которые химически интенсифицируют процессы разложения жидкой среды на составляющие элементы. Важно отметить, что накопление продуктов разложения в жидкой среде приводит к увеличению давления насыщенных паров внутри кавитационных пузырьков, затрудняя тем самым возникновение новых электрических разрядов и тормозя интенсификацию процессов стимуляции. Поэтому для неводных сред существенным является повышенное, в интервале 5÷10 кВ/см, напряжение поджигающего импульса, а его генерация в импульсном режиме продолжительностью 0.1÷100 мкс и частотой 1÷10 кГц позволяет не выходить за верхний предел заявленной напряженности. В случае водных сред наблюдается постоянное выделение в кавитационной зоне рабочей проточной камеры легкого продукта разложения – водорода. В этом случае ни повышенной напряженности электромагнитного поля, ни его генерации в импульсном режиме не требуется. Это делает перспективным применение заявленного устройства в качестве генератора водорода. Совокупность предложенных средств воздействия на жидкую среду позволяет создать кавитационный шум, характеризующийся частотой колебания 10÷1000 кГц и относительной мощностью 50÷90 dB. Работа предлагаемого устройства для соноплазменной стимуляции физико-химических и технологических процессов осуществляется следующим образом. Для конкретной жидкой среды с известной плотностью и динамической вязкостью подбирают геометрию излучающего сопла, обеспечивающую на выходе сужающегося цилиндрического канала скорость истечения жидкой среды, характеризующуюся переходом от ламинарного к турбулентному режиму, т.е. превышением критического числа Рейнольдса. Известно, что для потоков, проходящих по прямым трубам, критическое число Рейнольдса составляет Re Насосом поток жидкости через сужающийся цилиндрический канал, снабженный излучающим соплом, подают в рабочую проточную камеру, в которой создается зона кавитации за счет режима потока, отличного от ламинарного. Включают источник электромагнитного излучения, формируют в зоне кавитации рабочей камеры поле напряженностью, достаточной для газового разряда в образовавшихся и вновь образующихся кавитационных пузырьках. В случае неводных сред устанавливают импульсный режим электромагнитного излучения. Газовый разряд приводит к электрическому пробою жидкой среды и делает жидкость электропроводящей, в результате чего в рабочей жидкости возникает плазменный разряд, имеющий стабильное горение и позволяющий целенаправленно воздействовать на какой-либо из параметров осуществляемого процесса. Для поддержания стабильного горения вполне достаточно напряжения около 0.5 кВ/см, что на порядок ниже приложенного. Ниже приведены примеры использования устройства, производительностью 0.5 м3/час для соноплазменной стимуляции физико-химических и технологических процессов. Время пребывания единицы объема жидкости в режиме плазменного разряда составляло 0.2 сек. Примеры иллюстрируют, но не ограничивают применение предложенного устройства. Пример 1. Ливневый сток промышленного предприятия, загрязненный органическими веществами концентрацией 2.0 мг/л, что определяло величину химического потребления кислорода (ХПК), равную 1000 мгО/л, обрабатывали соноплазменным воздействием с помощью предлагаемого устройства. На зону кавитации накладывали постоянное поле напряженностью 2 кВ/см. На выходе из устройства ХПК жидкости снизился до 400 мгО/л. Повторная обработка жидкости при напряженности электромагнитного излучения 1 кВ/см позволила достичь ХПК, равное 250 мгО/л. Предлагаемое устройство позволяет провести водоподготовку к канализационному сбросу загрязненных технических стоков без применения широко распространенных методов озонирования и электрохимической обработки. Пример 2. Отработанные моторные масла обрабатывали соноплазменным воздействием с помощью предлагаемого устройства. На зону кавитации накладывали переменное поле напряженностью 10 кВ/см в импульсном режиме продолжительностью 10 мкс и частотой 8 кГц. После этого активированные масла разлагали термическим крекингом при атмосферном давлении и температуре нагрева 360°С. Выход конечных продуктов по составу составил: бензиновая фракция с температурой кипения до 180°С – 20%, дизельная фракция с температурой кипения 180-360°С – 65%, битумы дорожных марок – до 15%. Таким образом, предлагаемое устройство позволяет провести переработку отработанных масел с глубиной не ниже каталитического крекинга, однако энергозатраты при этом снижаются в 2-2.5 раза. В большой степени упрощается собственно технологический процесс переработки: отсутствует химический катализатор; не нужно проводить операции по его регенерации. Настоящее изобретение позволяет интенсифицировать физико-химические и технологические процессы и стимулировать их путем соноплазменного воздействия на непрерывный поток жидкости.
Формула изобретения
1. Устройство для соноплазменной стимуляции физико-химических и технологических процессов в жидкой среде, включающее рабочую проточную камеру, предназначенную для создания в ней зоны кавитации, поток жидкости в которую подается через сужающийся цилиндрический канал, при этом рабочая камера дополнительно снабжена источником электромагнитного излучения, выполненного с возможностью создания в зоне кавитации рабочей камеры как переменного, так и постоянного поля напряженностью 1÷10 кВ/см, а на выходе сужающегося цилиндрического канала расположено излучающее сопло, обеспечивающее режим потока, отличный от ламинарного. 2. Устройство по п.1, отличающееся тем, что источник электромагнитного излучения соединен, по меньшей мере, с двумя электродами, которые введены в полость рабочей камеры. 3. Устройство по п.1, отличающееся тем, что источник электромагнитного излучения выполнен в виде магнетрона, обеспечивающего возможность работы в СВЧ-диапазоне переменного поля. 4. Устройство по п.1, отличающееся тем, что источник электромагнитного излучения генерирует излучение в импульсном режиме продолжительностью 0,01÷100 мкс и частотой 1÷10 кГц.
|
||||||||||||||||||||||||||