|
(21), (22) Заявка: 2008120251/04, 21.05.2008
(24) Дата начала отсчета срока действия патента:
21.05.2008
(43) Дата публикации заявки: 27.11.2009
(46) Опубликовано: 27.06.2010
(56) Список документов, цитированных в отчете о поиске:
RU 2006124131 А, 20.01.2008. JP 200125423 А, 21.09.2001. RU 2147487 C1, 20.04.2000. RU 2256675 C2, 20.07.2005.
Адрес для переписки:
195269, Санкт-Петербург, ул. Ольги Форш, 13/1, кв.161, Г.М. Михайлову
|
(72) Автор(ы):
Михайлов Геннадий Михайлович (RU)
(73) Патентообладатель(и):
Михайлов Геннадий Михайлович (RU)
|
(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИСАХАРИДНЫХ МАТЕРИАЛОВ
(57) Реферат:
Изобретение относится к способу получения полисахаридных волокон для изготовления материалов, а именно, для получения рассасывающихся в организме человека и млекопитающих хирургических шовных материалов, рассасывающихся и нерассасывающихся перевязочных материалов, рассасывающихся тканых матричных материалов. Способ характеризуется тем, что в 2,4-4,0 мас.% раствор полисахарида в диметилацетамиде, содержащем 4,56-10,00 мас.% хлорида лития, добавляют 1,0-5,0 мас.% поли-N-винилпирролидона с молекулярной массой 8-35 кДа или металлополимерный комплекс – высокодисперсное серебро, стабилизированное поли-N-винилпирролидоном в таком количестве, что содержание высокодисперсного серебра по отношению к растворенному полисахариду в прядильном растворе составляет от 0,07 до 0,87 мас.%, при этом массовое соотношение полисахарид: металлополимерный комплекс составляет 88,0-99,0:1,0-12 мас.%, смесь интенсивно перемешивают, выдерживают, фильтруют, дегазируют и полученный прядильный раствор при комнатной температуре экструдируют в спиртовую осадительную ванну, в качестве которой используют водорастворимые алифатические С2 и С3 спирты, затем обрабатывают волокно в пластификационной и промывной ваннах и сушат. Технический результат – получение волокна с повышенными деформационно-прочностными характеристиками. 1 ил., 4 табл.
Изобретение относится к способу получения полисахаридных волокон для изготовления таких материалов с повышенными деформационно-прочностными свойствами, как моноволокна и полифиламенты, пленки, порошки из природных высокомолекулярных полимеров, включающих хитин и целлюлозу. Получаемым полисахаридным материалам могут быть дополнительно придана антимикробная активность за счет образования комплексов с высокодисперсным серебром.
Изобретение может найти использование для получения рассасывающихся и нерассасывающихся в организме человека и млекопитающих хирургических шовных материалов, перевязочных материалов, пленок и порошков с пролонгированной антимикробной активностью, а также рассасывающихся тканых матричных материалов для получения трансплантатов (дермальных эквивалентов), необходимых при лечении обширных повреждений кожного покрова при обширных ожогах и трофических язвах. Заявленный способ получения полисахаридных волокон для изготовления материалов с повышенными деформационно-прочностными свойствами характеризуется совокупностью следующих существенных признаков:
1. Полисахарид растворяют при нагревании в диметилацетамиде, содержащем 4,56-10,00 мас.% хлорида лития, с получением 2,4-4,0 мас.% раствора.
2. В раствор добавляют 1,0-5,0 мас.% поли-N-винилпирролидона (ПВП) с молекулярной массой 8-35 кДа или металлополимерный комплекс ПВП – высокодисперсное серебро в таком количестве, что содержание высокодисперсного серебра по отношению к растворенному полисахариду в конечном прядильном растворе составляет от 0,07 до 0,87 мас.%, при этом массовое соотношение полисахарид:металлополимерный комплекс составляет 88,0-99,0:1,0-12 мас.%, смесь интенсивно перемешивают, выдерживают, фильтруют, и дегазируют.
3. Полученный прядильный раствор при комнатной температуре экструдируют в спиртовую осадительную ванну, содержащую алифатические водорастворимые C2-С3 спирты; образующееся волокно пропускают через пластификационную и промывную ванны и сушат.
Волокна из природных полисахаридов давно привлекали внимание хирургов. Так, в т.н. папирусе Эдвина Смита (Интернет), возраст которого оценивают в 4000 лет, описано применение льна в качестве шовного материала.
Известно, что шовные нити могут быть нерассасывающимися, например, лен и другие виды целлюлоз различного происхождения и рассасывающимися ([1] Буянов В.М., Егиев В.Н., Удотов О.А. Хирургический шов – 2000-2005, сайт Ендохирургия, раздел «История шовных материалов»).
В настоящее время к хирургическим шовным материалам предъявляется комплекс следующих требований. Они должны быть биосовместимыми, сохраняющими прочность в течение времени, обеспечивающего полное заживление раны. Они должны не иметь аллергенных свойств, не обладать фитильностью (то есть способности к фильтрации через себя жидкостей), должны быть устойчивыми к различным инфекциям.
Если хирургическая шовная нить обладает антимикробной активностью, то такими недостатками, как фитильность, нестойкость к инфекциям можно пренебрегать. ([2] Кузьмина Н.Л., Бибер Б.Л., Абакумов Г.А. и др. Химические и натуральные нити для хирургических шовных материалов. – М.: НИИТЭХИМ, 1988 г. С.82).
9, С.152-157).
Биологически активные полисахариды позволяют иммобилизовать факторы роста, регуляции пролиферации клеток, что открывает широкие возможности регенерации не только кожных покровов, но и других жизненно-важных клеточных систем организма человека.
Стабилизация высокодисперсных металлических частиц в полимерных матрицах открывает широкие возможности для комбинирования свойств неорганических компонентов и полимеров.
Описано получение губчатых мембран из хитозана и хитин-хитозановой смеси, содержащих сульфодиазин серебра ([6] Tachira К., Onishi H., Machida Y., Preraration of silver sulfadiazine-containing spongy membranes of chitosan and chitin-chitosan mixture and their evaluation as burn wound dressings/ -Yakuzaigaku, 1997, 57(3), 159-167 (Japan), Nippon Yakuzai Gakkai. (Dep.Clinical Pharm., Hoshi Univ., Tokyo, Japan). Chem.Abstr. vol.128, 5, 1998).
Наиболее близким по технической сущности к заявленному решению является способ получения полисахаридных волокон ([7] Заявка РФ 2006124131 А, дата публикации 20.01.2008). Этот способ реализуется следующей совокупностью существенных признаков: «2.4-4,0 мас.% раствор полисахарида в диметилацетамиде, содержащем 4,56-10,0 мас.% хлорида лития, при комнатной температуре экструдируют в спиртовую осадительную ванну, в качестве которой используют водорастворимые алифатические С2 и С3 спирты, обрабатывают полученное волокно в пластификационной и промывной ваннах и сушат».
Однако полученный хирургический шовный материал оказался недостаточно прочным и эластичным. Причиной этого оказалась повышенная хрупкость нитей и низкие показатели разрывного удлинения.
Задачей предлагаемого изобретения являлось получение из природных высокомолекулярных полисахаридов таких материалов, как рассасывающиеся и нерассасывающиеся волокна (моноволокна и полифиламенты), с повышенными деформационно-прочностными свойствами, необходимыми для хирургического шовного материала, и рассасывающихся тканых матричных материалов.
Заявленный способ получения полисахаридных волокон для изготовления материалов с повышенными деформационно-прочностными свойствами характеризуется совокупностью следующих существенных признаков;
1. Полисахарид растворяют при нагревании в диметилацетамиде, содержащем 4,56-10,00 мас.% хлорида лития, с получением 2,4-4,0 мас.% раствора полисахарида.
2. В раствор добавляют 1,0-5,0 мас.% поли-N-винилпирролидона (ПВП) с молекулярной массой 8-35 кДа или металлополимерный комплекс ПВП – высокодисперсное серебро в таком количестве, что содержание высокодисперсного серебра по отношению к растворенному полисахариду в конечном прядильном растворе составляет от 0,07 до 0,87 мас.%, при этом массовое соотношение полисахарид:металлополимерный комплекс составляет 88,0-99,0:1,0-12 мас.%, смесь интенсивно перемешивают, выдерживают, фильтруют и дегазируют.
3. Полученный прядильный раствор при комнатной температуре экструдируют в спиртовую осадительную ванну, содержащую алифатические водорастворимые С2-С3 спирты; образующееся волокно пропускают через пластификационную и промывную ванны и сушат.
Выделение и очистку хитина из хитинсодержащего сырья проводят по следующему способу. Измельченные панцири крабов, креветки, криля многократно обрабатывают разбавленной соляной кислотой, охлажденной до 4-10°С, с последующей промывкой водой; затем материал однократно обрабатывают разбавленным водным раствором едкого натра при 35-45°С, промывают водой, обрабатывают водным раствором синтетического моющего средства при температуре 35-45°С и рН=11, промывают водой, водным раствором 1-5 мас.% уксусной кислоты, водой, ацетоном и сушат в вакууме при температуре, не превышающей 60°С.
Выделение очищенной целлюлозы проводят также известными способами.
Остатки лигнина из льна, хлопка и других видов промышленных целлюлоз предварительно удаляют кипячением полисахарида в водном растворе гидроксида натрия с тиосульфатом натрия. Целлюлозное сырье обессоливают разбавленным водным раствором соляной кислоты и промывают водой до рН=6-6,5. Выделенную целлюлозу инклюдируют ацетоном или этанолом и сушат в вакууме при температуре, не превышающей 60°С.
Необходимо отметить, что волокна, полученные из различных видов хитина и целлюлозы, обладают характерными для своей природы деформационно-прочностными характеристиками.
Отличительным от способа – прототипа существенным признаком является введение в раствор полисахарида поли-N-винилпирролидона (ПВП) с молекулярной массой (М) 8-35 кДа, в количестве 1,0-5,0 мас.% от массы полисахарида или металлополимерный комплекс ПВП-высокодисперсное серебро в таком количестве, что содержание высокодисперсного серебра по отношению к растворенному полисахариду в конечном прядильном растворе составляет от 0,07 до 0,87 мас.%, при этом массовое соотношение полисахарид:металлополимерный комплекс составляет 88,0-99,0:1,0-12 мас.%.
Примечание: при использовании метилового спирта в качестве осадительной ванны были также получены хорошие деформационно-прочностные характеристики полисахаридных волокон как содержащих ПВП, так и содержащих дополнительно комплекс полисахарид – высокодисперсное металлическое серебро. Однако из-за высокой токсичности метанола использование его при формовании волокон недопустимо.
Наиболее эффектное влияние на свойства волокон из креветочного хитина оказывают малые добавки ПВП от 1 до 5.0%. Наилучшим модификатором оказался ПВП с М=8-35 кДа. При введении 2.5% ПВП с М=12 кДа, в прядильный раствор была достигнута прочность волокна, равная 718 МПа, а удлинение при разрыве составило 6.8%. Такое волокно сохраняет в узле до 40% от исходной прочности. Результаты приведены в таблице 1.
Полученные из растворов сульфитной целлюлозы, при использовании фильеры 1/0,4, в соответствии с заявленным способом волокна, модифицированные поливинилпирролидоном, характеризуются прочностью при разрыве (р) 475-735 МПа; удлинением при разрыве () 7,9-9,2%, сохранение прочности в узле (у) 32-40,8%. Результаты приведены в таблице 2.
Модификацию раствора полисахарида комплексом ПВП – высокодисперсное серебро в соответствии с заявленным изобретением проводят добавлением в раствор металлополимерного комплекса, синтезированного по известному способу. (8. Патент РФ 2088234 «Водорастворимая бактерицидная композиция и способ ее получения» с приоритетом от 25.11.1994 года). Известная композиция представляет систему, содержащую наночастицы серебра, стабилизированные поли-N-винилпирролидоном.
Полученные при использовании фильеры 1/0,4 в соответствии с заявленным способом композиционные волокна из крабового хитина – монофиламенты характеризуются прочностью 700-916 МПа, удлинением при разрыве 5,0-8,1%, сохранением прочности в узле 8,9-25%. Результаты сведены в табл.3.
Полученные при использовании фильер с количеством отверстий до 300 и диаметром отверстий до 0,08 мм в соответствии с заявленным способом полифиламентные волокна из крабового хитина характеризуются прочностью от 600 до 868 МПа (63,4 сН/текс), сохранением прочности в узле от 40% до 69,8% и удлинением при разрыве от 5,0% до 8,5%. Результаты представлены в табл.4.
Испытания показали также, что полученные по заявленному способу волокна биосовместимы, рассасываются в течение времени, необходимого для полного заживления раны, не аллергенны, их механические свойства полностью соответствуют существующим требованиям к матричным и хирургическим шовным материалам. Радиационная, а также обычная жаро-паровая стерилизации не изменяют деформационно-прочностные характеристики волокон. Испытания показали, что волокна, содержащие высокодисперсное серебро, обладают высокой антимикробной активностью как к грамположительным, так и к грамотрицательным бактериям.
Анализ научно-технического уровня не позволил найти известный способ, совпадающий по всей совокупности существенных признаков с заявленным. Это позволяет утверждать о соответствии заявленного изобретения такому условию патентоспособности, как новизна.
Анализ известного научно-технического уровня показал новизну таких существенных признаков заявленного способа, как модификация растворов полисахаридов в системе диметилацетамид – хлористый литий добавлением ПВП, а также металлополимерным комплексом ПВП – Аg, содержащим наночастицы серебра. При этом неожиданно оказалось, что при этом улучшаются деформационно-прочностные характеристики модифицированного волокна. Было впервые обнаружено, что малые добавки ПВП или комплекса ПВП – Аg замедляют процессы кристаллизации хитина при формовании волокна, что способствует увеличению прочности и разрывного удлинения. Т.о. обнаружены новые неочевидные функции ПВП и комплекса ПВП – Аg: во-первых, полимерные добавки хорошо совмещаются в одном растворе с такими полимерами, как полисахариды (предсказать это было невозможно), во-вторых, такое совмещение способствует улучшению деформационно-прочностных характеристик композиционного волокна (предвидеть это также было невозможно) без ухудшения совместимости с организмом, в-третьих, взаимодействие полисахарида с введенным металлополимерным комплексом также сопровождается повышением деформационно-прочностных характеристик волокна, при этом образуются хелатные комплексы, что сопровождается обесцвечиванием прядильного раствора. Полученный конечный материал гомогенен и сохраняет высокую дисперсность наночастиц серебра. Это также оказалось неожиданным и неочевидным.
Нахождение новых, неочевидных функций ранее известного вещества придает заявленному решению в целом соответствие такому условию патентоспособности, как изобретательский уровень (неочевидность).
Формование волокна в соответствии с заявленным изобретением осуществляют «мокрым способом» (на приборе для исследования процессов формования волокон ПФВ-01).
Функциональная схема прибора представлена на чертеже. Используют шприц-дозатор или дозирующий насос и фильеры: 1/0,4 (одно отверстие с диаметром 0,4 мм); а также фильеры с количеством отверстий до 300 и с диаметрами отверстий от 0,06 до 0,08 (40/0,06; 40/0,07; 40/0,08 и т.д.).
Получение пленок осуществляют методом полива разбавленного прядильного раствора полисахарида на барабан или подложку с последующим осаждением, отмывкой водой и сушкой.
Получение порошковых материалов осуществляют размолом полученных волокон.
Ткань для рассасывающихся матриц изготавливали методом ручного ткачества.
На чертеже представлена функциональная схема прибора ПИФВ-01 для исследования процессов ориентационного формования волокон из растворов полимеров. Прибор включает следующие узлы:
1. Шприцевой прядильный узел, который состоит из блока управления, электродвигателя, редуктора, шприца-дозатора, фильтра и фильерного узла.
2. Сменный прядильный узел с дозирующим насосом, который состоит из блока управления электродвигателем, электродвигателя, редуктора, дозирующего насоса, бака прядильного раствора, фильтра и фильерного узла.
3. Осадительная ванна с рубашкой для поддержания требуемой температуры коагулянта.
4. Первая пластификационная ванна с рубашкой для поддержания требуемой температуры.
5. Вторая пластификационная ванна с рубашкой для поддержания требуемой температуры.
6. Блок промывки, который включает блок управления электродвигателем, электродвигателя, редуктора, термостата, ванны и подающего насоса.
7. Блок сушки, который состоит из блока управления электродвигателем, электродвигателя, редуктора, термокамеры с регулятором температуры.
8. Блок приема волокна с круткой и органами управления блоком.
А – Подметочные узлы, включающие блоки управления электродвигателями, электродвигатели, редукторы.
Электродвигатели дозирующих устройств, подметочных узлов, крутки, намотки снабжены стробоскопическими датчиками, которые связаны с блоками управления узлами и с регистрирующим устройством.
Исследования показали, что растворы полисахаридов в апротонных растворителях, содержащих хлорид лития и ПВП, а также ПВП-Аg, в отсутствии влаги воздуха в течение нескольких лет сохраняют постоянную величину вязкости и способность к образованию волокон с неизменными деформационно-прочностными характеристиками.
Испытания показали, что полученные модифицированные полисахаридные волокна, использованные в качестве шовного материала, биосовместимы, рассасываются в течение времени, необходимом для полного заживления раны. Они не аллергенны, не токсичны, их механические свойства полностью соответствуют существующим требованиям, предъявляемым к хирургическим шовным материалам. Радиационная стерилизация не изменяет деформационно-прочностные характеристики волокон.
Для доказательства соответствия заявленного решения условию патентоспособности промышленная применимость и для лучшего понимания сущности изобретения приводим примеры его конкретной реализации, которые не могут исчерпать сущность технического решения.
Получение полисахаридных волокон, модифицированных поливинилпирролидоном
Пример 1
Измельченное хитин – содержащее сырье (панцири креветки – крилевый хитин) многократно обрабатывают разбавленной соляной кислотой, охлажденной до 4-5°С, промывали водой; однократно обрабатывают разбавленным водным раствором едкого натра при 35-45°С, промывают водой, дважды синтетическим моющим средством при 35-45°С и рH=1, отмывают водой, водным раствором 1-5 мас.% уксусной кислоты, водой, ацетоном и сушат в вакууме при температуре, не превышающей 60°С. Выделенный хитин не содержит золы, белка и имеет М=120 кДа.
Навеску хитина – 10,1 г заливают горячим раствором 21,91 г хлорида лития, растворенного в 300 мл диметилацетамида (Т=80°С), перемешивают до полного растворения, фильтруют, дегазируют под вакуумом. Полученный раствор содержит 3,2 мас.% хитина и 7 мас.% LiCl. Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Осадительная ванна – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают и сушат.
Прочность полученной нити 300 МПа, удлинение при разрыве 1,8%.
Данные примеров 2-10, выполненных в условиях примера 1, но с добавлением ПВП, представлены в Таблице 1, где отображена зависимость деформационно-прочностных свойств композиционных хитиновых волокон от М и концентрации поли-N-винилпирролидона (ПВП).
Деформационно-прочностные свойства волокон из крилевого хитина, полученных с добавлением ПВП (по примерам 1-10) Таблица 1 |
Пример |
Молекулярная масса ПВП, x103 |
Состав раствора Хитин – ПВП, % |
Разрывная прочность, МПа |
Удлинение при разрыве, % |
1 |
Исходный Хитин |
100-0 |
300 |
1.8 |
2 |
8.0 |
99.0-1.0 |
384 |
3.7 |
3 |
97.5-2.5 |
370 |
4.4 |
4 |
95.0-5.0 |
366 |
3.8 |
5 |
12.0 |
99.0-1.0 |
773 |
4.0 |
6 |
97.5-2.5 |
718 |
6.8 |
7 |
95.0-5.0 |
577 |
6.1 |
8 |
35.0 |
99.0-1 |
573 |
5.5 |
9 |
97.5-2.5 |
528 |
3.1 |
10 |
95.0-5.0 |
484 |
5.1 |
Из данных Таблицы 1 видно, что наиболее эффектное влияние на свойства волокон из креветочного хитина оказывают малые добавки ПВП – от 1,0 до 5.0%. Эффект модификации достигается при ПВП с М=8.0-35 кДа. При введении 2.5% ПВП с М=12 кДа в прядильный раствор прочность волокна возросла до 718 МПа, а удлинение при разрыве составило 6.8%. Такое волокно сохраняет в узле до 40% от исходной прочности.
При увеличении концентрации ПВП в прядильном растворе более 5.0% наблюдается снижение всех механических характеристик волокна, на значения которых также существенное влияние оказывает молекулярная масса ПВП. Использование низкомолекулярного ПВП с М менее 8.0 кДа и высокомолекулярного с М более 50 кДа приводят к заметному снижению прочности и удлинения при разрыве, при этом модуль упругости практически не изменяется, однако при использовании ПВП с М более 800 кДa наблюдается резкое падение его.
Пример 11
Сульфитную целлюлозу обеззоливают разбавленным водным раствором соляной кислоты и промывают водой до рН=6-6,5. Обеззоленную целлюлозу инклюдируют ацетоном сушат в вакууме при температуре, не превышающей 60°С.
Навеску сульфитной целлюлозы – 10,1 г заливают горячим раствором 21,91 г хлорида лития, растворенного в 300 мл диметилацетамида (Т=80°С), перемешивают до полного растворения, фильтруют, дегазируют под вакуумом. Полученный раствор содержит 3,2 мас.% целлюлозы и 7 мас.% LiCl.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Осадительная ванна – изопропанол, температура комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Деформационно-прочностные характеристики волокна, кондиционированного при относительной влажности 65% (рН=65), определяли на приборе «Инстрон-110». База испытуемых образцов составляла 50 мм, скорость нагружения – 10 мм/мин. В каждом определении прочности характеристика является средним значением, полученным на 5 параллельных образцах. Прочность полученной нити 370 МПа, удлинение при разрыве 7,0%, сохранение прочности в узле 28,9%, начальный модуль (модуль Юнга) 19,2 ГПа, линейная плотность 1,37 текс.
Пример 12
В 100 г раствора целлюлозы, полученного в условиях примера 11, при перемешивании растворяют 0,0337 г поли-N-винилпирролидона, 1,00 мас.%, ПВП от содержащегося в растворе полисахарида. Используют ПВП с М=12 кДа. Раствор фильтруют, дегазируют и получают прядильный раствор целлюлозы для формования волокна.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Полученное волокно характеризуют в условиях примера 11. Прочность полученной нити 735 МПа, удлинение при разрыве 8,1%, сохранение прочности в узле 32,0%, начальный модуль 20 ГПа, линейная плотность 1,37 текс.
Пример 13
В растворе целлюлозы (100 г), полученной в условиях примера 11, растворяют 0,0840 г ПВП (2,5%). Полученный раствор фильтруют, дегазируют и используют для формования волокна. Условия формования волокна и определения деформационно-прочностных свойств также аналогичны условиям примера 11.
Прочность волокна при разрыве 685 МПА, удлинение при разрыве 9,2%; начальный модуль 19,5 ГПа; сохранение прочности в узле – 40,8%; линейная плотность 1,37 текс.
Пример 14
В 100 г раствора целлюлозы, полученной по в условиях примера 11, растворяют 0,1683 г ПВП (5,0%). Раствор фильтруют, дегазируют и формуют волокно. Полученное волокно характеризуется прочностью 576 МПа; удлинение при разрыве 9,0%; начальный модуль 19,2 ГПа; сохранение прочности в узле – 40,0%; линейная плотность 1,37 текс.
Пример 15
В 100 г раствора целлюлозы, полученной в условиях примера 1, растворяют 0,5017 г ПВП (10,0%). Раствор фильтруют, дегазируют и формуют волокно. Полученное волокно характеризуется прочностью 457 МПа; удлинение при разрыве 7,9%; начальный модуль 19,0 ГПа; сохранение прочности в узле – 38,0%; линейная плотность 1,37 текс.
Для лучшего понимания результаты примеров 11-15 сведены в таблицу 2.
Характеристика волокон из сульфитной целлюлозы, модифицированной поливинилпирролидоном Таблица 2 |
/ п/п |
Состав раствора Целлюлоза – ПВП, % |
, МПа |
Е, ГПа |
, % |
р, % |
11 |
100,0-0,0 |
370 |
19,2 |
7,0 |
28,9 |
12 |
99,0-1,0 |
735 |
20 |
8,1 |
32,0 |
13 |
97,5-2,5 |
685 |
19,5 |
9,2 |
40,8 |
14 |
95,0-5,0 |
576 |
19,2 |
9,0 |
40,0 |
15 |
90,0-10,0 |
457 |
19,0 |
7,9 |
38,0 |
Анализ результатов, приведенных в табл.2, показывает, что, как и в случаях с низкомолекулярным креветочным хитином, модификация прядильных растворов низкомолекулярной сульфитной целлюлозы (СП=220) приводит к увеличению деформационно-прочностных характеристик волокон, полученных из этих растворов. Максимум прироста прочностных характеристик наблюдается при малых добавках 1,0-5,0% ПВП с М=12 кДа. Следует отметить, что в таблице 1, где также отражено и влияние молекулярной массы ПВП на изменение деформационно-прочностных характеристик модифицированных хитиновых волокон, максимальное увеличение прочности соответствует ПВП с М=12 кДа.
Получение волокон при модификации прядильного раствора металлополимерным комплексом ПВП- Аg
Пример 16
Измельченное хитин – содержащее сырье (панцири крабов) многократно обрабатывают разбавленной соляной кислотой, охлажденной до 4-5°С, промывали водой; однократно обрабатывают разбавленным водным раствором 5 мас.% едкого натра при 35-45°С, промывают водой, водным раствором синтетического моющего средства при 35-45°С и рН=11, отмывают водой, инклюдируют ацетоном и сушат в вакууме при температуре 60°С. Выделенный хитин не содержит золы, белка и имеет М=180 кДа.
Навеску хитина – 10,1 г заливают горячим раствором 21,91 г, хлорида лития, растворенного в 300 мл диметилацетамида (Т=80°С), перемешивают до полного растворения, фильтруют, дегазируют под вакуумом. Полученный раствор содержит 3,2 мас.% хитина и 7 мас.% LiCl.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Осадительная ванна – изопропанол, температура комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроле по азотнокислому серебру) и сушат.
Прочности полученной нити 645 МПа, удлинение при разрыве 7,0%, сохранение прочности в узле 16,0%, линейная плотность 1,35 текс.
Пример 17
В 100 г раствора хитина, полученного в условиях примера 16, при перемешивании растворяют 0,00224 г серебра, стабилизированного поли-N-винилпирролидоном, 1,00 мас.% ПВП-Аg от содержащегося в растворе хитина. Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,0320 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат.
Прочность полученной нити 895 МПа, удлинение при разрыве 8,1%, сохранение прочности в узле 25,0%, линейная плотность 1,37 текс.
Пример 18
В 100 г раствора хитина, полученного в условиях примера 16, при перемешивании растворяют 0,0056 г серебра, стабилизированного поли-N-винилпирролидоном, 2,5 мас.% ПВП-Аg от содержащегося в растворе полисахарида (хитина). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,0800 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным. Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат. Прочность полученной нити 916 МПа, удлинение при разрыве 8,0%, сохранение прочности в узле 24,1%, линейная плотность 1,37 текс.
Пример 19
В 100 г раствора хитина, полученного в условиях примера 16, при перемешивании растворяют 0,0112 г серебра, стабилизированного поли-N-винилпирролидоном, 5,00 мас.% ПВП-Аg от содержащегося в растворе полисахарида (хитина). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП – Аg составляет 7%. После растворения 0,1600 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным.
Получение волокна осуществляют с использованием шприц-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат.
Прочность полученной нити 884 МПа, удлинение при разрыве 6,7%, сохранение прочности в узле 19,2%, линейная плотность 1,38 текс.
Пример 20
В 100 г раствора хитина, полученного в условиях примера 16, при перемешивании растворяют 0,0224 г серебра, стабилизированного поли-N-винилпирролидоном, 10,00 мас.% ПВП-Аg от содержащегося в растворе полисахарида (хитина). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,3200 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат. Прочность полученной нити 845 МПа, удлинение при разрыве 6,7%, сохранение прочности в узле 18,5%, линейная плотность 1,40 текс.
Пример 21
В 100 г раствора хитина в условиях примера 16 при перемешивании растворяют 000269 г серебра, стабилизированного поли-N-винилпирролидоном, 12,00 мас.% ПВП-Аg от содержащегося в растворе полисахарида (хитина). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,3840 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным.
Получение волокна осуществляют с использованием шприц-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат.
Прочность полученной нити 805 МПа, удлинение при разрыве 6,0%, сохранение прочности в узле 13,7%, линейная плотность 1,40 текс.
Пример 22
В 100 г раствора хитина, полученного в условиях примера 16, при перемешивании растворяют 0,03136 г серебра, стабилизированного поли-N-винилпирролидоном, 14,00 мас.% ПВП-Аg от содержащегося в растворе полисахарида (хитина). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,4480 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Раствор экструдируют в спиртовую осадительную ванну – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат. Прочность полученной нити 709 МПа, удлинение при разрыве 5,0%, сохранение прочности в узле 8,9%, линейная плотность 1,42 текс.
Пример 23
Раствор хитина, содержащий высокодисперсное серебро и полученный в условиях примера 17, экструдируют в спиртовую осадительную ванну – этанол, температура – комнатная. Формование волокна осуществляют с использованием шприца-дозатора и фильеры 1/0,4. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру) и сушат. Прочность полученной нити 886 МПа, удлинение при разрыве 8,1%, сохранение прочности в узле 25,1%, линейная плотность 1,37 текс.
Результаты этих примеров суммированы в таблице 3.
Деформационно-прочностные характеристики композиционных волокон из крабового хитина, содержащих высокодисперсное серебро Таблица 3 |
/ примеров |
Состав прядильного раствора, мас.% |
Показатели волокна, мононить. Фильера-1/0,4 |
хитин |
LiCl |
ПВП-Ag |
Содержание Аg, |
Линейная плотность, текс |
Прочность при разрыве, МПа |
Удлинение при разрыве, % |
Прочность в узле, % от исходной |
16 |
3,2 |
7,00 |
0,00 |
0,00 |
1,35 |
|
|
|
17 |
3,2 |
7,00 |
1,00 |
0,07 |
1,37 |
895 |
8,1 |
25,0 |
18 |
3,2 |
7,00 |
2,50 |
0,17 |
1,37 |
916 |
8,0 |
24,1 |
19 |
3,2 |
7,00 |
5,00 |
0,38 |
1,38 |
884 |
6,7 |
19,2 |
20 |
3,2 |
7,00 |
10,00 |
0,70 |
1,40 |
845 |
6,7 |
18,5 |
21 |
3,2 |
7,00 |
12,00 |
0,84 |
1,40 |
805 |
6,0 |
13,7 |
22 |
3,2 |
7,00 |
14,00 |
0,97 |
1,42 |
709 |
5,0 |
8,9 |
23* |
3,2 |
7,00 |
1,00 |
0,07 |
1,37 |
886 |
8,1 |
25,1 |
* – Коагулянт – этиловый спирт |
Получение полифиламентных нитей
Пример 24
Раствор хитина, содержащий высокодисперсное серебро, полученный в условиях примера 18, экструдируют в осадительную ванну через фильеру 300/0,08 в изопропанол при комнатной температуре. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Прочность полученной нити 641 МПа (46,8 сН/текс), удлинение при разрыве 8,0%, сохранение прочности в узле 68,0%, линейная плотность 13,7 текс.
Пример 25
Раствор хитина, содержащий высокодисперсное серебро, полученный в условиях примера 19, экструдируют в осадительную ванну через фильеру 300/0,08 в изопропанол при комнатной температуре. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Прочность полученной нити 601 МПа (43,6 сН/текс), удлинение при разрыве 6,9%, сохранение прочности в узле 69,8%, линейная плотность 13,8 текс.
Пример 26
Бактериальную целлюлозу инклюдируют ацетоном, сушат в вакууме при 60°С до постоянного веса. Навеску целлюлозы 9,17 г (3%) заливают горячим (80°С) раствором 21,91 г LiCl (7%) в 300 мл диметилацетамида. Перемешивают до полного растворения, фильтруют, дегазируют под вакуумом. Полученный прядильный раствор содержит 3,0 мас.% бактериальной целлюлозы и 7 мас.% LiCl.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 300/0,08. Осадительная ванна – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Прочность полученной нити 734 МПа, удлинение при разрыве 7,2%, сохранение прочности в узле 41,1%, линейная плотность 1,36 текс.
Пример 27
В 100 г раствора бактериальной целлюлозы, полученного в условиях примера 20, при перемешивании растворяют 0,00560 г серебра, стабилизированного поли-N-винилпирролидоном, 2,5 мас.% ПВП-Аg от содержащегося в растворе полисахарида (целлюлозы). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,0800 г ПВП-Аg модифицированный раствор хитина оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным.
Фильеры 300/0,08. Осадительная ванна – изопропанол, температура комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Прочность полученной нити 868 МПа (63,4 сН/текс), удлинение при разрыве 8,5%, сохранение прочности в узле 60,0%, линейная плотность 1,37 текс.
Пример 28
Из хлопкового линтера, не содержащего воск, удаляют остаточный лигнин при кипячении в водном растворе гидроксида натрия (5%) и тиосульфата натрия (20%). Далее линтер промывают дистиллированной водой, избыточную влагу отжимают, инклюдируют ацетоном и сушат в вакууме при 60°С до постоянного веса.
Навеску очищенного хлопкового линтера 9,17 г (3%) заливают горячим (80°С) раствором 21,91 г LiCl (7%) в 300 мл диметилацетамида. Перемешивают до полного растворения, фильтруют, дегазируют под вакуумом. Полученный прядильный раствор содержит 3,0 мас.% целлюлозы и 7 мас.% LiCl.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 300/0,08. Осадительная ванна – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат.
Прочность полученной нити 618 МПа (44,8 сН/текс), удлинение при разрыве 5,0%, сохранение прочности в узле 40,8%, линейная плотность 1,38 текс.
Пример 29
В 100 г раствора хлопкового линтера, полученного в условиях примера 28, при перемешивании растворяют 0,00560 г серебра, стабилизированного поли-N-винилпирролидоном, 2,5 мас.% ПВП-Аg от содержащегося в растворе полисахарида (целлюлозы). Для стабилизации серебра используют ПВП с М=12 кДа. Содержание Аg в композиции ПВП-Аg составляет 7%. После растворения 0,0800 г ПВП-Аg модифицированный раствор целлюлозы оставляют на ночь для завершения реакции хелатирования. Об окончании процесса судят по обесцвечиванию системы – коричневый раствор становится бесцветным. Раствор фильтруют, дегазируют и получают прядильный раствор для формования волокна.
Получение волокна осуществляют с использованием шприца-дозатора и фильеры 300/0,08. Осадительная ванна – изопропанол, температура – комнатная. Пластификационная и промывная ванны – дистиллированная вода с температурой 50°С. Скорость приема волокна – 3 м/мин. Полученное волокно отмывают водой при температуре 85±5°С от хлорида лития (контроль по азотнокислому серебру), охлаждают, обрабатывают ацетоном и сушат. Прочность полученной нити 911 МПа (65,1 сН/текс), удлинение при разрыве 5,5%, сохранение прочности в узле 59,2%, линейная плотность 1,40 текс. Результаты примеров 24-29, получения полифиламентных нитей (использована фильера 300/0,08) из растворов различных полисахаридов (хитина, целлюлозы из хлопкового линтера и бактериальной целлюлозы) для лучшего понимания сведены в таблицу 4.
Деформационно-прочностные характеристики композиционных полисахаридных волокон, содержащих высокодисперсное серебро Таблица 4 |
/ Примеров* |
Состав прядильного раствора, мас.% |
Показатели волокна. Фильера – 300/0,08 |
Полиса-харид |
LiCl |
ПВП-Ag |
Содержание Ag, мас.% |
Линейная плотность, текс |
Прочность при разрыве, МПа |
Удлинение при разрыве, % |
Прочность в узле, % от исходной |
24 |
3,2 |
7,00 |
2,50 |
0,17 |
1,37 |
|
|
|
25 |
3,2 |
7,00 |
5,00 |
0,38 |
1,38 |
601 |
6,9 |
69,8 |
26 |
3,0 |
7,00 |
0,00 |
0,00 |
1,36 |
734 |
7,15 |
41,1 |
27 |
3,0 |
7,00 |
2,50 |
0,17 |
1,37 |
868 |
8,5 |
60,0 |
28 |
3,0 |
7,00 |
0,00 |
0,00 |
1,38 |
618 |
5,0 |
40,8 |
29 |
3,0 |
7,00 |
2,50 |
0,17 |
1,40 |
911 |
5,5 |
59,2 |
* примеры: 24, 25 – крабовый хитин; 26 и 27 – бактериальная целлюлоза; 28 и 29 – целлюлоза хлопкового линтера. |
Получение пленок осуществляют методом полива разбавленного прядильного раствора полисахарида на барабан или подложку с последующим осаждением, отмывкой водой и сушкой. Порошковые материалы получают размолом волокон.
Формула изобретения
Способ получения полисахаридных волокон для изготовления материалов, характеризующийся тем, что в 2,4-4,0 мас.% раствор полисахарида в диметилацетамиде, содержащем 4,56-10,00 мас.% хлорида лития, добавляют 1,0-5,0 мас.% поли-N-винилпирролидона (ПВП) с молекулярной массой 8-35 кДа или металлополимерный комплекс – высокодисперсное серебро, стабилизированное поли-N-винилпирролидоном в таком количестве, что содержание высокодисперсного серебра по отношению к растворенному полисахариду в прядильном растворе составляет от 0,07 до 0,87 мас.%, при этом массовое соотношение полисахарид: металлополимерный комплекс составляет 88,0-99,0:1,0-12 мас.%, смесь интенсивно перемешивают, выдерживают, фильтруют, дегазируют и полученный прядильный раствор при комнатной температуре экструдируют в спиртовую осадительную ванну, в качестве которой используют водорастворимые алифатические С2 и С3 спирты, затем обрабатывают полученное волокно в пластификационной и промывной ваннах и сушат.
РИСУНКИ
|
|