Патент на изобретение №2391426
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ТИТАНОВЫЙ СПЛАВ ДЛЯ СИЛОВЫХ КРЕПЕЖНЫХ ЭЛЕМЕНТОВ
(57) Реферат:
Изобретение относиться к металлургии, а именно к титановым сплавам, и предназначено для использования в атомном энергомашиностроении при производстве силовых крепежных элементов фланцевых соединений и разъемов различных технологических систем реакторного оборудования атомных и термоядерных установок. Для получения высокотехнологичного титанового сплава с улучшенным комплексом основных механических и служебных свойств предложен титановый сплав, содержащий, мас.%: алюминий 2,5-3,5, молибден 4,5-5,5, ванадий 4,5-5,0, цирконий 0,1-0,3, железо 0,05-0,25, кремний 0,05-0,15, ниобий 0,1-0,3, вольфрам 0,03-0,08, никель 0,05-0,1, церий 0,003-0,008, углерод 0,03-0,10, кислород 0,05-0,15, азот 0,01-0,05, водород 0,005-0,010, титан – основа, при этом суммарное содержание углерода и азота не превышает 0,12%. Обеспечивается повышение работоспособности и эксплуатационной надежности силового крепежа фланцевых соединений и разъемов различных сосудов давления, трубопроводов и арматуры реакторного оборудования. 3 табл.
Изобретение относится к металлургии титановых сплавов, содержащих в качестве основы титан с заданным соотношением легирующих и примесных элементов, и предназначено для использования в атомном энергетическом машиностроении при производстве силовых крепежных элементов фланцевых соединений и герметичных разъемов различных сосудов давления, трубопроводов и арматуры реакторного оборудования. Известны конструкционные титановые материалы, применяемые в машиностроении и атомной энергетике (например, титановые сплавы типа ВТ, ОТ и ПТ, а также другие аналоги), указанные в государственных и отраслевых стандартах, а также в научно-технической литературе [1-5]. Однако известные сплавы в ряде случаев не обеспечивают требуемого уровня и стабильности основных физико-механических и служебных характеристик материала в условиях длительной высокотемпературной эксплуатации силового крепежа, что снижает работоспособность и эксплуатационную надежность энергетического оборудования и не отвечает требованиям, предъявляемым к объектам ядерной энергетики при их эксплуатации в течение заданного ресурса. Наиболее близким к заявленной композиции по базовому составу и функциональному назначению является титановый (
Известный титановый сплав характеризуется недостаточно высоким уровнем кратковременной и длительной прочности при температурах эксплуатации (до 300°С) крепежных элементов реакторного оборудования. Вместе с тем этот сплав обладает низким сопротивлением усталости в агрессивных средах, а также пониженными значениями пластичности и ударной вязкости после нейтронного облучения. Техническим результатом настоящего изобретения является создание титанового сплава для силовых крепежных элементов, обладающего более высоким уровнем кратковременной и длительной прочности при температурах эксплуатации крепежных элементов реакторного оборудования (300°С), повышенным сопротивлением усталости в агрессивных средах, а также более высокими значениями пластичности и ударной вязкости после нейтронного облучения. Технический результат достигается за счет того, что в титановом сплаве для силовых крепежных элементов, содержащем алюминий, молибден, ванадий, цирконий, железо, кремний, титан, углерод, кислород, азот, водород, согласно изобретению дополнительно введены ниобий, вольфрам, никель и церий при следующем соотношении компонентов, мас.%:
При этом суммарное содержание углерода и азота не должно превышать 0,12% при значительном ограничении (до 0,010%) содержания водорода в твердом растворе. Соотношение указанных легирующих и примесных элементов выбрано таким, чтобы заявляемый сплав после соответствующей термической обработки обеспечивал формирование наиболее оптимального структурного состояния, требуемый уровень и стабильность важнейших стуктурно-чувствительных характеристик материала, во многом определяющих заданную работоспособность и эксплуатационную надежность силового крепежа фланцевых соединений и технологических разъемов герметизирующих устройств реакторного оборудования. Комплексное введение в заданную композицию микролегирющих и модифицирующих добавок ниобия, вольфрама, никеля и церия в указанном соотношении с другими легирующими элементами, прежде всего с алюминием, молибденом и ванадием, улучшает структурную стабильность и деформационную способность материала, снижает его чувствительность к коррозионно-усталостному разрушению при длительной эксплуатации в рабочих средах, а ограничение суммарного содержания азота и углерода повышает работу зарождения и развития трещин в условиях статического и динамического нагружений. При этом, как показали результаты исследований [5-9], происходит более равномерное распределение легирующих элементов по всему сечению слитка и полуфабрикатов, металл эффективнее очищается от вредных примесей и газов, более активно идет формирование мелкозернистой структуры с равноосной формой зерен, тоньше и чище становяться их границы, увеличивается прочность межкристаллитной связи, что в целом обеспечивает значительное повышение пластичности и вязкости металла в сложных условиях длительной эксплуатации силового крепежа. Введение модифицирующих добавок вне указанных в формуле изобретения пределов снижает эффективность их положительного влияния и не приводит к заметному улучшению этих структурно-чувствительных характеристик работоспособности материала крепежных элементов. Фрактографический анализ поверхности изломов образцов методом сканирования на растровом электронном микроскопе показал, что в заявляемом сплаве доля вязкой составляющей в зоне усталостного разрушения металла заметно возрастает, по сравнению с известным составом. Полученный более высокий уровень основных механических и служебных характеристик сплава обеспечивается комплексным легированием заявляемой композиции в указанном соотношении с другими элементами, сбалансированным химическим и фазовым составом, нормированным содержанием вводимых микролегирющих и модифицирующих добавок, а также контролем чистоты металла по содержанию остаточных вредных примесей. В ФГУП «ЦНИИ КМ «Прометей» совместно с другими предприятиями отрасли в соответствии с планом проводимых научно-исследовательских разработок в рамках федеральной целевой программы «Энергетика-2015» выполнен необходимый комплекс лабораторных, расчетных и опытно-технологических работ по выплавке, пластической и термической обработке создаваемой марки сплава. Металл выплавлялся в вакуумных гарнисажных электропечах с магнитоуправляемой дугой с последующей обработкой на кузнечно-прессовом оборудовании с получением полуфабрикатов требуемого сортамента. Химический состав исследованных материалов и результаты определения основных механических и служебных характеристик представлены в табл.1-3. Ожидаемый технико-экономический эффект от применения разработанного титанового сплава в атомной энергетике и других отраслях народного хозяйства выразится в повышении эксплуатационной надежности и ресурса работы высоконагруженных фланцевых соединений и герметичных разъемов реакторного оборудования создаваемых атомных и термоядерных установок.
Литература 1. ОСТ 1 90013-71 «Сплавы титановые» (марки), прототип. 2. ОСТ 1 90202-75 «Прутки горячекатаные из сплава марки ВТ 16». 3. ГОСТ 19807 «Титан и сплавы титановые деформируемые» (марки). 4. Б.Б. Чечулин, С.С.Ушков и др. Титановые сплавы в машиностроении. Изд-во «Машиностроение», Л. 1977. 5. И.В.Горынин, В.В.Рыбин, С.С.Ушков и др. Титановые сплавы как перспективный реакторный материал. Сб.ст. «Радиационное материаловедение и конструкционная прочность реакторных материалов» Изд-е ЦНИИ КМ «Прометей», С-Пб, 2002. 6. К.Д.Хромушкин, А.Н.Савкин «Влияние напряжений затяжки на релаксационную стойкость и усталостную прочность резьбового соединения». Сб. Судостроительная промышленность. Вып.1, С-Пб, 1986. 7. В.А.Межонов, К.Д.Хромушкин «Влияние антизадирных покрытий на характеристики свинчиваемости и коррозионно-механическую прочность болтов из титановых сплавов». Сб. Судостроительная промышленность. Вып.11, С-Пб, 1991. 8. О.А.Кожевников, В.В.Рыбин, Е.В.Нестерова и др. «Механические свойства, тонкая структура и микромеханизмы разрушения облученных нейтронами сплавов титана». Журнал «Металловедение и термическая обработка металлов», 9. И.И.Горынин, С.С.Ушков, А.Н.Хатунцев, Н.И.Лошакова «Титановые сплавы для морской техники». Изд-во «Политехника». С-Пб, 2007.
Формула изобретения
Титановый сплав для силовых крепежных элементов, содержащий алюминий, молибден, ванадий, цирконий, железо, кремний, углерод, кислород, азот, водород и титан, отличающийся тем, что он дополнительно содержит ниобий, вольфрам, никель и церий при следующем соотношении компонентов, мас.%:
при этом суммарное содержание углерода и азота не превышает 0,12%. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

+
) сплав марки ВТ 16 системы Ti-Al-Mo-V ОСТ 1.90013 [1], содержащий в своем составе легирующие и примесные элементы в следующем соотношении, в мас.%:
0,3
1000
300°C
5 после нейтронного облучения
9, 1999.