Патент на изобретение №2167908
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ
(57) Реферат: Использование: нефтехимия. Сущность: каталитический крекинг нефтяных фракций осуществляют в присутствии катализатора, состоящего из 5-20% цеолита Y с мольным отношением оксид кремния : оксид алюминия, равным 4,5-9,5 и 80-95 мас. %, и алюмосиликатной основы и имеющего следующий химический состав, мас.%: оксид алюминия 5,5-9,5, оксиды редкоземельных элементов 0,5-3,0, платина 0,0001-0,01, оксид железа 0,01-0,4, оксид железа 0,01-0,4, оксид кальция 0,01-0,5, оксид магния 0,001-0,5, оксид натрия 0,01-0,5, оксид кремния – остальное. Способ позволяет увеличить выход бензина, повысить октановое число бензина и снизить выброс оксидов серы при регенерации катализатора в окружающую среду. 2 табл. Изобретение относится к получению моторных топлив и может быть использовано в процессе каталитического крекинга в нефтеперерабатывающей промышленности. Известен способ получения моторных топлив путем крекинга нефтяных фракций с использованием цеолитсодержащего алюмосиликатного катализатора в шариковой и микросферической формах. В шариковой форме катализатор содержит 10-12 мас.% цеолита Y и имеет химический состав, мас.%: Оксид алюминия – 9-10 Оксиды редкоземельных элементов – 2,0-2,5 Оксид натрия – 0,2-0,6 Оксид кремния – Остальное (Крекинг нефтяных фракций на цеолитсодержащих катализаторах. Под ред. С. Н.Хаджиева. М., Химия. 1982 г.). В микросферической форме катализатор содержит 16-18 мас.% цеолита Y и имеет следующий химический состав, мас.%: Оксид алюминия – 10-12 Оксиды редкоземельных элементов – 2,5-3,0 Оксид натрия – 0,2-0,6 Оксид кремния – Остальное Известен также способ крекинга нефтяных фракций в присутствии цеолитсодержащих алюмосиликатных катализаторов с добавкой микроколичеств платины 0,0001-0,1 мас. % (Патент США N 4429053, кл. B 01 J 29/12; Патент Франции N 2500326, кл. B 01 J 29/12; Яндиева Л.А. Закарина Н.А. Катализаторы крекинга и цеолиты. Сборник научных трудов ГрозНИИ, М., ЦНИИТЭНЕФТЕХИМ, 1984 г., N 38, с. 76-80). Наиболее близким к предлагаемому способу по технической сущности и достигаемому результату является способ получения моторных топлив путем крекинга нефтяных фракций в присутствии платиноцеолитсодержащего редкоземельного алюмосиликатного катализатора с содержанием платины 0,00001-0,002% (Патент FR 2407745, 1979 г.). Содержание цеолита обработанного солью металла II-VIII гр. составляет 12-60%; катализатор содержит также возможно ![]() ![]() Оксид алюминия – 5,5-9,5 Оксиды редкоземельных элементов – 0,5-3,0 Платина – 0,0001-0,01 Оксид железа – 0,01-0,4 Оксид кальция – 0,01-0,5 Оксид магния – 0,001-0,5 Оксид натрия – 0,01-0,5 Оксид кремния – Остальное Процесс получения моторных топлив путем крекинга нефтяных фракций осуществляют следующим образом: на шариковых катализаторах крекинг вакуумного газойля проводят при температуре 450-480oC, объемной скорости подачи сырья 1,0-2,5 ч-1, кратности циркуляции катализатора 1,5-2,5 кг/кг; на микросферических катализаторах крекинг проводят при 470-510oC, объемной скорости сырья 4,8 ч-1, кратности циркуляции 6,9 кг/кг. Катализатор готовят по следующей методике. Водные растворы сульфата алюминия, подкисленного серной кислотой, содержащего 15-25 кг/м3 оксида алюминия и 50-80 кг/м3 серной кислоты, силиката натрия (жидкого стекла) концентрации по NaOH 1,4-1,8 кг ![]() ![]() ![]() Оксид алюминия – 8,5 Оксиды редкоземельных элементов – 2,5 Платина – 0,0001 Оксид железа – 0,01 Оксид кальция – 0,01 Оксид магния – 0,001 Оксид натрия – 0,2 Оксид кремния – Остальное Пример 2. Водный раствор сульфата алюминия, содержащий 25 кг/м3 Al2O3 и 80 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,8 кг ![]() Оксид алюминия – 9,5 Оксиды редкоземельных элементов – 3,0 Платина – 0,01 Оксид железа – 0,4 Оксид кальция – 0,5 Оксид магния – 0,5 Оксид натрия – 0,5 Оксид кремния – Остальное Пример 3. Водный раствор сульфата алюминия, содержащий 15 кг/м3 Al2O3 и 50 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,4 кг ![]() Оксид алюминия – 5,5 Оксиды редкоземельных элементов – 0,5 Платина – 0,004 Оксид железа – 0,1 Оксид кальция – 0,15 Оксид магния – 0,1 Оксид натрия – 0,01 Оксид кремния – Остальное Пример 4. Водный раствор сульфата алюминия, содержащий 20 кг/м3 Al2O3 и 70 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,6 кг ![]() Оксид алюминия – 8,5 Оксиды редкоземельных элементов – 1,5 Платина – 0,0001 Оксид железа – 0,2 Оксид кальция – 0,2 Оксид магния – 0,001 Оксид натрия – 0,15 Оксид кремния – Остальное Пример 5. Водный раствор сульфата алюминия, содержащий 20 кг/м3 Al2O3 и 0,04 кг/м3 платинохлористоводородной кислоты (в расчете на платину) и 70 кг/м3 H2SO4, водный раствор силиката натрия (жидкое стекло) концентрации по NaOH 1,6 кг ![]() Оксид алюминия – 8,5 Оксиды редкоземельных элементов – 1,5 Платина – 0,01 Оксид железа – 0,01 Оксид кальция – 0,01 Оксид магния – 0,001 Оксид натрия – 0,2 Оксид кремния – Остальное Пример 6. Катализатор готовят аналогично примеру 5. Далее после промывки шарики гидрогеля подвергают диспергированию в воде при 50oC, распылительной сушке при температуре входа дымовых газов 650oC и выхода дымовых газов 190oC и прокаливанию в кипящем слое при 750oC в течение 12 ч в токе паровоздушной смеси. Полученный катализатор имеет состав как в примере 5. Пример 7. Катализатор готовят аналогично примеру 5. Далее после промывки шарики гидрогеля подвергают диспергированию в воде при 35oC, распылительной сушке при температуре входа дымовых газов 400oC и выхода дымовых газов 160oC и прокаливанию в кипящем слое при 600oC в течение 24 ч в токе паровоздушной смеси. Полученный катализатор имеет состав как в примере 5. Пример 8. Катализатор готовят аналогично примеру 5. Далее после промывки шарики гидрогеля подвергают диспергированию в воде при 60oC, распылительной сушке при температуре входа дымовых газов 500oC и выхода дымовых газов 175oC и прокаливанию в кипящем слое при 750oC в течение 24 ч в токе паровоздушной смеси. Полученный катализатор имеет состав как в примере 5. Пример 9. Катализатор готовят аналогично примеру 5. Далее после прокаливания катализатора его подвергают ситовому разделению и фракцию шариков с диаметром менее 2 мм подвергают помолу с получением микросферического катализатора. Полученный катализатор имеет состав как в примере 5. Пример 10. Катализатор, полученный по примеру 4, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с движущимся слоем катализатора при температуре реакции крекинга 450oC, объемной скорости подачи сырья 1,0 ч-1 и кратности циркуляции катализатора 1,5 кг/кг. Пример 11. Катализатор, полученный по примеру 4, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с движущимся слоем катализатора при температуре реакции крекинга 480oC, объемной скорости подачи сырья 2,5 ч-1 и кратности циркуляции катализатора 2,5 кг/кг. Пример 12. Микросферический катализатор, полученный по примеру 6, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с “кипящим” слоем катализатора при температуре реакции крекинга 470oC, объемной скорости подачи сырья 4,0 ч-1 и кратности циркуляции катализатора 6,0 кг/кг. Пример 13. Микросферический катализатор, полученный по примеру 6, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс осуществляют на пилотной установке с “кипящим” слоем катализатора при температуре реакции крекинга 510oC, объемной скорости подачи сырья 8,0 ч-1 и кратности циркуляции катализатора 9,0 кг/кг. Полученные катализаторы перед лабораторными испытаниями обрабатывают 100%-ным водяным паром при 750oC в течение 6 ч. Испытания шариковых катализаторов проводят согласно ОСТ 38.01176-79 при температуре 460oC и объемной скорости подачи сырья 1,5 ч-1. В качестве сырья используют стандартное сырье: керосино-газойлевую фракцию краснодарских нефтей (плотность при 20oC 862 кг/м3, температура начала кипения 203oC, температура конца кипения 360oC). Микросферические катализаторы испытывают согласно ОСТ 38.01161-78 при 480oC и весовой скорости подачи сырья 7,0 ч-1. Результаты лабораторных испытаний представлены в таблице 1. Шариковые катализаторы, полученные по примерам 1-5, используют в процессе крекинга вакуумного газойля западно-сибирской нефти (плотность 916 кг/м3, температура начала кипения 512oC, содержание серы 1,6 мас.%). Процесс проводят на пилотной установке с движущимся слоем катализатора при температуре 460oC, объемной скорости подачи сырья 1,5 ч-1, кратности циркуляции катализатора 2 кг/кг. Микросферические катализаторы, полученные по примерам 6-9, используют в процессе крекинга вакуумного газойля западно-сибирской нефти. Процесс проводят на пилотной установке с “кипящим” слоем катализатора при температуре 480oC, массовой скорости подачи сырья 5 ч-1, кратности циркуляции катализатора 7 кг/кг. Результаты пилотных испытаний шариковых и микросферических катализаторов представлены в таблице 2. Формула изобретения
Оксид алюминия – 5,5 – 9,5 Оксиды редкоземельных элементов – 0,5 – 3,0 Платина – 0,0001 – 0,01 Оксид железа – 0,01 – 0,4 Оксид кальция – 0,01 – 0,5 Оксид магния – 0,001 – 0,5 Оксид натрия – 0,01 – 0,5 Оксид кремния – Остальное РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 02.09.2003
Извещение опубликовано: 10.01.2005 БИ: 01/2005
|
||||||||||||||||||||||||||