Патент на изобретение №2167840
|
||||||||||||||||||||||||||
(54) РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ
(57) Реферат: Радиопоглощающий материал на основе титаната стронция и дополнительного компонента BiMO3, где M выбирается из группы элементов, включающей хром, марганец, железо. Использование: в радиоэлектронной технике при получении материала с высокими значениями действительной части диэлектрической проницаемости и высокими диэлектрическими потерями в сверхвысокочастотном (СВЧ) диапазоне – радиопоглощающего материала. Технический результат: создание материалов с большим значением диэлектрических потерь в СВЧ-диапазоне в широком температурном и частотном интервалах. 3 табл. Изобретение относится к области радиотехники и может быть использовано при создании элементов, поглощающих радиоволны высокочастотного и сверхвысокочастотного (СВЧ) диапазонов. Важным фактором при создании элементов радиопоглощения в радиотехнике СВЧ является наличие у материала больших значений действительной части диэлектрической проницаемости и тангенса угла диэлектрических потерь [1]. Наиболее близким по технической сущности является радиопоглощающий материал на основе титаната стронция SrTiO3 с добавками пятиокиси ниобия Nb2O5 или тантала Ta2O5 [2]. К недостаткам материала относится отсутствие указаний на его возможность использования в широком интервале температур, поскольку как диэлектрическая проницаемость, так и тангенс угла диэлектрических потерь существенно зависят от температуры и частоты. Эти величины могут расти или понижаться при повышении температуры или частоты, или иметь максимумы на их температурных или частотных зависимостях. В патенте [2] приведены данные о значениях диэлектрической проницаемости и тангенса угла диэлектрических потерь материалов только при комнатной температуре и только на двух частотах СВЧ-диапазона. Цель изобретения состоит в создании материалов с большим значением диэлектрических потерь в СВЧ-диапазоне в более широком температурном и частотном интервалах. Цель достигается тем, что в радиопоглощающем материале на основе титаната стронция SrTiO3 при замещении в твердом растворе стронция на висмут, а титана на хром, марганец или железо достигается большее значение как диэлектрической проницаемости, так и тангенса угла диэлектрических потерь в СВЧ-диапазоне при комнатной температуре и при повышенной температуре. Изобретение иллюстрируется данными таблиц 1-3. Как видно из таблицы 1, при комнатной температуре при понижении частоты от 2,0 ГГц до 0,5 ГГц как значения действительной части диэлектрической проницаемости, так и тангенса угла диэлектрических потерь увеличиваются во всех материалах. При этом наибольшее значение диэлектрической проницаемости имеет место в случае материала состава 0,6SrTiO3-0,4BiFeO3, а диэлектрических потерь – в материале 0,4SrTiO3-0,6BiMnO3. При температуре 100oC в материале 0,6SrTiO3-0,4BiCrO3 диэлектрическая проницаемость при понижении частоты в указанном диапазоне также увеличивается, а тангенс потерь имеет максимальное значение среди указанных в таблице материалов при данной температуре. Величина тангенса потерь при температурах 100oC и 200oC существенно больше единицы на частотах 0,5 ГГц и 2,0 ГГц в материалах 0,4SrTiO3-0,6BiMnO3 и 0,3SrTiO3-0,7BiMnO3, а в материале 0,4SrTiO3-0,6BiMnO3 и при комнатной температуре на частоте 0,5 ГГц. Методика получения радиопоглощающего материала заключается в том, что включает в себя смешивание карбоната стронция, оксида титана и дополнительного компонента BiMO3 (M = Cr, Mn, Fe), обжиг смеси на воздухе, формование и спекание при температуре от 800oC до 1300oC в течение нескольких часов в зависимости от химического состава материала. Для измерения действительной части диэлектрической проницаемости и тангенса угла диэлектрических потерь в диапазоне СВЧ используют резонаторный измеритель параметров сегнетоэлектриков (РИПСЭ-М). Величины диэлектрической проницаемости и тангенса потерь рассчитывают через измеренные параметры резонатора: изменение резонансной длины и добротности резонатора с образцом относительно его длины и добротности при коротком замыкании торцевого зазора. Методика измерений и расчета действительной части диэлектрической проницаемости и тангенса угла диэлектрических потерь описана в [3, 4]. Измерения проводят на образцах, изготовленных в виде цилиндров диаметром 2 мм и высотой 1 мм с нанесенными на торцевые поверхности методом вжигания серебросодержащей пасты электродами. Рентгенофазовый анализ, проведенный на рентгеновском дифрактометре ДРОН-3, показал, что образцы однофазны и обладают структурой перовскита. Таким образом, изобретение позволяет создать материалы с большим значением диэлектрических потерь в СВЧ-диапазоне в широком температурном и частотном интервалах. Источники информации 2. Европейский патент N 0331578, МПК6 C 04 B 35/46, 1989 (прототип). Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 29.05.2005
Извещение опубликовано: 27.04.2006 БИ: 12/2006
|
||||||||||||||||||||||||||