Патент на изобретение №2388091

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2388091 (13) C1
(51) МПК

H01F1/28 (2006.01)
H01F1/44 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.09.2010 – действует

(21), (22) Заявка: 2008137315/02, 17.09.2008

(24) Дата начала отсчета срока действия патента:

17.09.2008

(46) Опубликовано: 27.04.2010

(56) Список документов, цитированных в отчете о
поиске:
GB 1439031 А, 09.06.1976. RU 2276420 C1, 10.05.2006. RU 1658752 С, 20.03.1995. RU 2182382 C1, 10.05.2002. JP 2005057229 А, 03.03.2005.

Адрес для переписки:

150023, г.Ярославль, Московский пр., 88, ГОУВПО “ЯГТУ”

(72) Автор(ы):

Калаева Сахиба Зияддин кзы (RU),
Макаров Владимир Михайлович (RU),
Шипилин Анатолий Михайлович (RU),
Захарова Ирина Николаевна (RU),
Ерехинская Анна Геннадьевна (RU),
Дубов Андрей Юрьевич (RU),
Шипилин Михаил Анатольевич (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Ярославский государственный технический университет” (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ

(57) Реферат:

Изобретение относится к области получения магнитных жидкостей. Способ включает смешение растворов, содержащих трех- и двухвалентное железо в соотношении Fe3+/Fe2+=3:2, осаждение магнитных частиц добавлением к смеси растворов 28%-ного гидроксида аммония, покрытие осажденных магнитных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония растворимую аммонийную соль, подогрев суспензии магнитных частиц для преобразования стабилизирующего вещества, отделение водной фазы и добавление неводного жидкого носителя, обладающего некоторой растворимостью по отношению к стабилизирующему веществу. В качестве источника трехвалентного железа используют отход после очистки дымовых газов на металлургическом производстве, а в качестве источника двухвалентного железа – сульфат железа – отход производства титановых белил сернокислым способом. Способ позволяет получить магнитные жидкости с высокими магнитными характеристиками при использовании отхода металлургического производства и отхода производства титановых белил. 1 табл.

Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита) из отхода металлургического производства и сульфата железа – отхода производства титановых белил.

Магнитная жидкость – устойчивая коллоидная система высокодисперсных частиц магнитного материала (ферро- или ферримагнитных веществ), стабилизированного поверхностно-активными веществами в жидкости-носителе, которая способна взаимодействовать с магнитным полем и во многих отношениях ведет себя как однородная жидкость.

Магнитные жидкости, благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и находят применение в различных областях техники: при создании магнитно-жидкостных уплотнений в химической промышленности, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине.

Получение магнитных жидкостей состоит из двух основных операций.

1. Получение высокодисперсных частиц магнетика.

2. Стабилизация частиц магнетика в жидкости-носителе с использованием диспергирующего вещества, предотвращающего агрегирование частиц магнетика в жидкости-носителе и обеспечивающего устойчивость магнитной жидкости.

Первоначально в качестве феррофазы при получении магнитной жидкости использовали материалы, обладающие более высокими магнитными свойствами – высокодисперсное металлическое железо, кобальт, мягкие магнитные сплавы типа пермендюр [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. – С.21-28; Черкасова О.Г., Петров В.И., Руденко Б.А. Рентгеноконтрастная ферромагнитная жидкость. – Формация. – 1986. – т.35, 3. – С.31-34; Физические свойства магнитных жидкостей: Сб. статей. – Сверловск, УНУ АН СССР, 1983. – 128 с.]. Однако при использовании чистых металлов возникает ряд технологических трудностей, связанных как с получением высокодисперсных частиц и их защитой от окисления, так и с их стабилизацией с последующим диспергированием в жидкости-носителе. Поэтому наряду с металлами в качестве феррофазы все чаще используется магнетит (окись-закись железа), который хотя и уступает металлам по магнитным характеристикам, но благодаря простоте получения высокодисперсных частиц, хорошей адсорбционной способности и химической устойчивости позволяет получать магнитные жидкости, которые превосходят по магнитным параметрам магнитные жидкости на металлах.

Известен способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+ – избытком щелочи (NaOH и NH4OH) [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. – С.21-28]. Предпочтительными солями являются хлориды и сульфаты из-за их доступности и экономичности. Присутствие ионов других металлов – Mg2+, Cr3+, Ni2+, Сu2+ – не являются вредными, если их содержание невелико.

Осадок магнетита промывают деконтацией от избытка щелочи и удаления солей до достижения рН=7. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор – ПАВ. В качестве жидкости-носителя используется керосин, в качестве стабилизатора – олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя.

Известен также [Ахалая М.Г., Кокиашвили М.С., Берия В.П. Перспективы применения магнитных жидкостей в биологии и медицине. – В кн.: Физические свойства магнитных жидкостей: – Сб. статей. – Свердловск, УНУ АН СССР, 1983. – С.115-120] способ получения магнитной жидкости, в котором синтез феррофазы осуществляется как в вышеуказанном способе, затем производится удаление воды из осадка последовательной промывкой его ацетоном, толуолом. Для получения магнитной жидкости в требуемой жидкости-носителе толуол сливают с осадка магнетита, влажный осадок переносят в фарфоровую ступню, добавляют к нему стабилизатор – олеиновую кислоту. Из полученной смеси толуол выпаривают нагреванием в ступне до 90-110°С при непрерывном растирании осадка. После испарения толуола смесь продолжают тщательно растирать при той же температуре. Полученную массу переносят с помощью требуемого количества дисперсионной среды в мельницу и гомогенизируют в стальной мельнице на 1/2 заполненной стальными шарами. Нужная степень пептизации достигается за 6-12 ч.

Описанные способы получения магнитной жидкости отличаются трудоемкостью и длительностью процессов.

Наиболее близкий к заявленному способ, описанный в патенте 1439031 – Великобритания, МПК: Н01F 1/36, В05D 7/00, С02В 9/09, выбранный нами за прототип.

Он состоит из следующих стадий.

1. Образование суспензий магнитных частиц коллоидного размера в воде.

2. Покрытие поверхности частиц адсорбированным слоем стабилизирующего вещества, которое имеет растворимую в воде форму.

3. Нагрев суспензии покрытых стабилизирующим веществом частиц до температуры, достаточной для разложения стабилизирующего вещества и превращения его в форму, не растворимую в воде.

4. Отделение от суспензии фракции, содержащей покрытые стабилизирующим веществом магнитные частицы. Отделенная фракция диспергируется в любой неводной жидкости, обладающей растворимостью для стабилизирующего вещества в его форме. Полученная магнитная жидкость представляет стабильную коллоидную суспензию магнитных частиц.

В описанном способе для получения высокодисперсных частиц магнетита был использован как источник соли Fe2+ травильный раствор сталеплавильного завода, имеющий следующий химический состав, %: Fеобщ – 99,98; Fe2+ – 98,07; Mn2+ – 0,41; Cr3+ – 0,008; Ni2+ – 0,015; Cu2+ – 0,013; свободная HCl – 30,2. При этом источником соли Fe3+ служил тот же травильный раствор, в котором FеСl3 был получен окислением Fе2+ перекисью водорода. Излишек перекиси водорода был удален из раствора кипячением.

Задачей настоящего изобретения является усовершенствование способа получения магнитных жидкостей с высокими магнитными характеристиками путем использования отхода металлургического производства как источника Fe3+ и сульфата железа – отхода производства титановых белил как источника Fe2 для получения высокодисперсной феррофазы.

Указанная задача достигается тем, что проведение процесса получения магнитной жидкости по предлагаемому способу исключает операцию окисления травильного раствора с целью получения Fe3+ перекисью водорода с последующим кипячением раствора для удаления излишка перекиси водорода. Предлагаемый способ предполагает вместо окисления травильного раствора использовать в качестве источника Fe 3+, имеющийся в больших количествах отход после очистки дымовых газов на металлургических заводах. Простое (без подогрева) растворение данного отхода в соляной кислоте обеспечит стабильное наличие одного из компонентов (FeCI3) для получения высокодисперсного магнетита, а источником второго компонента может явиться отход-сульфат железа, образующийся при получении титановых белил сернокислым способом.

Экономическая целесообразность предлагаемого способа состоит в следующем.

1. Предлагается использование в качестве сырья отхода производства.

2. Не потребуется затрат на окисление травильного раствора перекисью водорода и его последующего кипячения.

Процесс получения магнитной жидкости состоит из следующих операций.

1. Смешение в требуемом соотношении (Fe3+/Fe2+=3:2) растворов, содержащих трех- и двухвалентное железо.

2. Получение суспензии магнитных частиц коллоидного размера пептизацией смеси растворов добавлением гидроксида аммония 28%-ного.

3. Покрытие осажденных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония аммонийную соль, растворимую в воде.

4. Подогрев суспензии стабилизированных частиц для преобразования стабилизирующего вещества (разложение его аммонийной соли с образованием аммиачного газа) и превращение в нерастворимую в воде форму и отделение их от водной фазы.

5. Образование магнитной жидкости при смешении коагулянта с неводными жидкими носителями, которые обладают некоторой растворимостью по отношению к стабилизирующему веществу.

Пример 1

Отход после очистки дымовых газов металлургических заводов, высушенный при 105°С в течение 1 ч с влажностью 3,2%; содержание основного вещества (Fе2О3) – 55,7%; содержание нерастворимого в HCI остатка – 22,4%; рН водной вытяжки – 6,6; содержание водорастворимых солей – 2,2% растворяют в концентрированной соляной кислоте; после фильтрования раствора его смешивают с водным раствором сульфата железа – отхода производства титановых белил, содержащим массовую долю соединений железа в пересчете на Fе2O3 – 1,6%, на FeO – 22,4%, затем медленно добавляют 50 см3 28%-ного гидроксида аммония с одновременным перемешиванием для осаждения гидроксидов железа. Смесь подогревают до 95°С и добавляют 50 см3 керосина и 5 см3 олеиновой кислоты на 100 см3 суспензии (при интенсивном перемешивании). Затем продолжают подогрев и происходит отчетливое разделение водной и органической фаз. Водную фазу удаляют с помощью пипетки. Этим уменьшают время подогрева, а также ликвидируют большую часть хлорида аммония. Подогрев продолжают до тех пор, пока не истощится H2O и температура органической фазы не возрастет до 130°С.

Жидкость охлаждают до комнатной температуры и сливают в мензурку. Добавляют керосин до объема жидкости 55 см3, чем компенсируют потерю керосина во время подогрева. Свойства полученной магнитной жидкости представлены в таблице – МЖ1.

Пример 2

Проводится как пример 1, но исходными компонентами для получения магнитной феррофазы является травильный раствор и соль FеСl3·6Н2О. Свойства полученной магнитной жидкости представлены в таблице – МЖ2.

Пример 3

Проводится как пример 2, но объемная доля магнетита увеличена в 2 раза. Свойства полученной магнитной жидкости представлены в таблице – МЖ3.

Для сравнения в таблице представлены показатели магнитной жидкости из патента Великобритании 1439031 (пример 4) – МЖ4. Магнитная феррофаза получена осаждением избытка из смеси солей FеСl3·6Н2O и FeCl2·4H2O избытком гидроксида аммония.

Пример 5

Магнитная жидкость получена по примеру 1 патента Великобритании 1439031. Свойства полученной магнитной жидкости представлены в таблице – МЖ5.

Таблица
Показатели магнитных жидкостей
Показатели Магнитная жидкость
MX1 МЖ2 МЖ3 МЖ4 МЖ5
Объемная доля магнетита, % 6,36 4,29 10,0 4,06
Плотность, кг/м3 985 972 1200 950 963
Вязкость, Па·с·103 4,819 3,334 7,8 3,065
Намагниченность насыщения, кА/м 17,70 12,15 25,0 10,09 11,17

Формула изобретения

Способ получения магнитной жидкости, включающий смешение растворов, содержащих трех- и двухвалентное железо в соотношении Fe3+/Fe2+=3:2, осаждение магнитных частиц добавлением к смеси растворов 28%-ного гидроксида аммония, покрытие осажденных магнитных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония растворимую аммонийную соль, подогрев суспензии магнитных частиц для преобразования стабилизирующего вещества, отделение водной фазы и добавление неводного жидкого носителя, обладающего некоторой растворимостью по отношению к стабилизирующему веществу, отличающийся тем, что в качестве источника трехвалентного железа используют отход после очистки дымовых газов на металлургическом производстве, а в качестве источника двухвалентного железа – сульфат железа – отход производства титановых белил сернокислым способом.

Categories: BD_2388000-2388999