Патент на изобретение №2388091
|
|||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ
(57) Реферат:
Изобретение относится к области получения магнитных жидкостей. Способ включает смешение растворов, содержащих трех- и двухвалентное железо в соотношении Fe3+/Fe2+=3:2, осаждение магнитных частиц добавлением к смеси растворов 28%-ного гидроксида аммония, покрытие осажденных магнитных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония растворимую аммонийную соль, подогрев суспензии магнитных частиц для преобразования стабилизирующего вещества, отделение водной фазы и добавление неводного жидкого носителя, обладающего некоторой растворимостью по отношению к стабилизирующему веществу. В качестве источника трехвалентного железа используют отход после очистки дымовых газов на металлургическом производстве, а в качестве источника двухвалентного железа – сульфат железа – отход производства титановых белил сернокислым способом. Способ позволяет получить магнитные жидкости с высокими магнитными характеристиками при использовании отхода металлургического производства и отхода производства титановых белил. 1 табл.
Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита) из отхода металлургического производства и сульфата железа – отхода производства титановых белил. Магнитная жидкость – устойчивая коллоидная система высокодисперсных частиц магнитного материала (ферро- или ферримагнитных веществ), стабилизированного поверхностно-активными веществами в жидкости-носителе, которая способна взаимодействовать с магнитным полем и во многих отношениях ведет себя как однородная жидкость. Магнитные жидкости, благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и находят применение в различных областях техники: при создании магнитно-жидкостных уплотнений в химической промышленности, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. Получение магнитных жидкостей состоит из двух основных операций. 1. Получение высокодисперсных частиц магнетика. 2. Стабилизация частиц магнетика в жидкости-носителе с использованием диспергирующего вещества, предотвращающего агрегирование частиц магнетика в жидкости-носителе и обеспечивающего устойчивость магнитной жидкости. Первоначально в качестве феррофазы при получении магнитной жидкости использовали материалы, обладающие более высокими магнитными свойствами – высокодисперсное металлическое железо, кобальт, мягкие магнитные сплавы типа пермендюр [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. – С.21-28; Черкасова О.Г., Петров В.И., Руденко Б.А. Рентгеноконтрастная ферромагнитная жидкость. – Формация. – 1986. – т.35, Известен способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+ – избытком щелочи (NaOH и NH4OH) [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980. – С.21-28]. Предпочтительными солями являются хлориды и сульфаты из-за их доступности и экономичности. Присутствие ионов других металлов – Mg2+, Cr3+, Ni2+, Сu2+ – не являются вредными, если их содержание невелико. Осадок магнетита промывают деконтацией от избытка щелочи и удаления солей до достижения рН=7. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор – ПАВ. В качестве жидкости-носителя используется керосин, в качестве стабилизатора – олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя. Известен также [Ахалая М.Г., Кокиашвили М.С., Берия В.П. Перспективы применения магнитных жидкостей в биологии и медицине. – В кн.: Физические свойства магнитных жидкостей: – Сб. статей. – Свердловск, УНУ АН СССР, 1983. – С.115-120] способ получения магнитной жидкости, в котором синтез феррофазы осуществляется как в вышеуказанном способе, затем производится удаление воды из осадка последовательной промывкой его ацетоном, толуолом. Для получения магнитной жидкости в требуемой жидкости-носителе толуол сливают с осадка магнетита, влажный осадок переносят в фарфоровую ступню, добавляют к нему стабилизатор – олеиновую кислоту. Из полученной смеси толуол выпаривают нагреванием в ступне до 90-110°С при непрерывном растирании осадка. После испарения толуола смесь продолжают тщательно растирать при той же температуре. Полученную массу переносят с помощью требуемого количества дисперсионной среды в мельницу и гомогенизируют в стальной мельнице на 1/2 заполненной стальными шарами. Нужная степень пептизации достигается за 6-12 ч. Описанные способы получения магнитной жидкости отличаются трудоемкостью и длительностью процессов. Наиболее близкий к заявленному способ, описанный в патенте 1439031 – Великобритания, МПК: Н01F 1/36, В05D 7/00, С02В 9/09, выбранный нами за прототип. Он состоит из следующих стадий. 1. Образование суспензий магнитных частиц коллоидного размера в воде. 2. Покрытие поверхности частиц адсорбированным слоем стабилизирующего вещества, которое имеет растворимую в воде форму. 3. Нагрев суспензии покрытых стабилизирующим веществом частиц до температуры, достаточной для разложения стабилизирующего вещества и превращения его в форму, не растворимую в воде. 4. Отделение от суспензии фракции, содержащей покрытые стабилизирующим веществом магнитные частицы. Отделенная фракция диспергируется в любой неводной жидкости, обладающей растворимостью для стабилизирующего вещества в его форме. Полученная магнитная жидкость представляет стабильную коллоидную суспензию магнитных частиц. В описанном способе для получения высокодисперсных частиц магнетита был использован как источник соли Fe2+ травильный раствор сталеплавильного завода, имеющий следующий химический состав, %: Fеобщ – 99,98; Fe2+ – 98,07; Mn2+ – 0,41; Cr3+ – 0,008; Ni2+ – 0,015; Cu2+ – 0,013; свободная HCl – 30,2. При этом источником соли Fe3+ служил тот же травильный раствор, в котором FеСl3 был получен окислением Fе2+ перекисью водорода. Излишек перекиси водорода был удален из раствора кипячением. Задачей настоящего изобретения является усовершенствование способа получения магнитных жидкостей с высокими магнитными характеристиками путем использования отхода металлургического производства как источника Fe3+ и сульфата железа – отхода производства титановых белил как источника Fe2 для получения высокодисперсной феррофазы. Указанная задача достигается тем, что проведение процесса получения магнитной жидкости по предлагаемому способу исключает операцию окисления травильного раствора с целью получения Fe3+ перекисью водорода с последующим кипячением раствора для удаления излишка перекиси водорода. Предлагаемый способ предполагает вместо окисления травильного раствора использовать в качестве источника Fe 3+, имеющийся в больших количествах отход после очистки дымовых газов на металлургических заводах. Простое (без подогрева) растворение данного отхода в соляной кислоте обеспечит стабильное наличие одного из компонентов (FeCI3) для получения высокодисперсного магнетита, а источником второго компонента может явиться отход-сульфат железа, образующийся при получении титановых белил сернокислым способом. Экономическая целесообразность предлагаемого способа состоит в следующем. 1. Предлагается использование в качестве сырья отхода производства. 2. Не потребуется затрат на окисление травильного раствора перекисью водорода и его последующего кипячения. Процесс получения магнитной жидкости состоит из следующих операций. 1. Смешение в требуемом соотношении (Fe3+/Fe2+=3:2) растворов, содержащих трех- и двухвалентное железо. 2. Получение суспензии магнитных частиц коллоидного размера пептизацией смеси растворов добавлением гидроксида аммония 28%-ного. 3. Покрытие осажденных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония аммонийную соль, растворимую в воде. 4. Подогрев суспензии стабилизированных частиц для преобразования стабилизирующего вещества (разложение его аммонийной соли с образованием аммиачного газа) и превращение в нерастворимую в воде форму и отделение их от водной фазы. 5. Образование магнитной жидкости при смешении коагулянта с неводными жидкими носителями, которые обладают некоторой растворимостью по отношению к стабилизирующему веществу. Пример 1 Отход после очистки дымовых газов металлургических заводов, высушенный при 105°С в течение 1 ч с влажностью 3,2%; содержание основного вещества (Fе2О3) – 55,7%; содержание нерастворимого в HCI остатка – 22,4%; рН водной вытяжки – 6,6; содержание водорастворимых солей – 2,2% растворяют в концентрированной соляной кислоте; после фильтрования раствора его смешивают с водным раствором сульфата железа – отхода производства титановых белил, содержащим массовую долю соединений железа в пересчете на Fе2O3 – 1,6%, на FeO – 22,4%, затем медленно добавляют 50 см3 28%-ного гидроксида аммония с одновременным перемешиванием для осаждения гидроксидов железа. Смесь подогревают до 95°С и добавляют 50 см3 керосина и 5 см3 олеиновой кислоты на 100 см3 суспензии (при интенсивном перемешивании). Затем продолжают подогрев и происходит отчетливое разделение водной и органической фаз. Водную фазу удаляют с помощью пипетки. Этим уменьшают время подогрева, а также ликвидируют большую часть хлорида аммония. Подогрев продолжают до тех пор, пока не истощится H2O и температура органической фазы не возрастет до 130°С. Жидкость охлаждают до комнатной температуры и сливают в мензурку. Добавляют керосин до объема жидкости 55 см3, чем компенсируют потерю керосина во время подогрева. Свойства полученной магнитной жидкости представлены в таблице – МЖ1. Пример 2 Проводится как пример 1, но исходными компонентами для получения магнитной феррофазы является травильный раствор и соль FеСl3·6Н2О. Свойства полученной магнитной жидкости представлены в таблице – МЖ2. Пример 3 Проводится как пример 2, но объемная доля магнетита увеличена в 2 раза. Свойства полученной магнитной жидкости представлены в таблице – МЖ3. Для сравнения в таблице представлены показатели магнитной жидкости из патента Великобритании Пример 5 Магнитная жидкость получена по примеру 1 патента Великобритании
Формула изобретения
Способ получения магнитной жидкости, включающий смешение растворов, содержащих трех- и двухвалентное железо в соотношении Fe3+/Fe2+=3:2, осаждение магнитных частиц добавлением к смеси растворов 28%-ного гидроксида аммония, покрытие осажденных магнитных частиц в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония растворимую аммонийную соль, подогрев суспензии магнитных частиц для преобразования стабилизирующего вещества, отделение водной фазы и добавление неводного жидкого носителя, обладающего некоторой растворимостью по отношению к стабилизирующему веществу, отличающийся тем, что в качестве источника трехвалентного железа используют отход после очистки дымовых газов на металлургическом производстве, а в качестве источника двухвалентного железа – сульфат железа – отход производства титановых белил сернокислым способом.
|
|||||||||||||||||||||||||||||||||||||