Патент на изобретение №2388017
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ПЛЕНОЧНЫЙ СЦИНТИЛЛЯТОР ДЛЯ РЕГИСТРАЦИИ БЕТА- И ФОТОННОГО ИЗЛУЧЕНИЙ
(57) Реферат:
Изобретение относится к радиометрии жидких, газообразных, твердых сред, а также к дозиметрии ионизирующих излучений. Пленочный сцинтиллятор выполнен из поликарбоната, наполненного сцинтиллирующим люминофором из смеси порошкообразного кристаллического орто-силикатогерманата иттрия, гадолиния, лютеция и церия, имеющего общую стехиометрическую формулу Y2-х-у-z·Cdx·Luy·Cez·О3(SiO2)1-р(GeO2)р с интервалами стехиометрических индексов: х=0,01
Изобретение относится к радиометрии жидких, газообразных, твердых сред, а также к дозиметрии ионизирующих излучений, в особенности к дисперсным тонкослойным пленочным сцинтилляционным детекторам бета и фотонного излучений. Оптимальным является применение в сцинтилляционных детекторах для измерения низких уровней интенсивности бета- и фотонного излучения в широком диапазоне энергий, а также при использовании фотоприемников на основе кремниевых фотодиодов. Известен сцинтиллятор на основе йодистого натрия, активированного таллием, с высоким по отношению к антрацену относительным световыходом (Физический энциклопедический словарь, М., СЭ, 1983 г., с.733). Однако высокая гигроскопичность исключает возможность его использования в качестве активного наполнителя дисперсного пленочного сцинтиллятора. Известен пленочный пластмассовый сцинтиллятор на основе полимера из группы поли-n-ксилеленов для регистрации электронов и гамма-полей (RU, 2150128, 27.05.2000). Известный сцинтиллятор обладает энергетическим выходом ~7% и высоким быстродействием (длительность сцинтилляции ~4 нс). Недостатком известного сцинтиллятора является невысокое значение эффективного атомного номера zэфф (zэфф~7 углеродных единиц), а также недостаточная высота термоустойчивости энергетического выхода (-25% на 25°C), что не позволяют широко использовать его в практике радиометрических и дозиметрических измерений, особенно в области малых энергий (E<20 кэВ) полей фотонного излучения. Наиболее близким к предложенному является известный сцинтиллятор для регистрации бета и фотонного излучения, выполненный в виде пленки, имеющей полимерную основу из поликарбоната, наполненную сцинтиллирующим люминофором из порошкообразного кристаллического орто-силикатогерманата иттрия, гадолиния, лютеция и церия (RU 2279692, G01T 1/20, 2005 г.). Недостатком известного сцинтиллятора является относительно узкий спектральный диапазон оптического излучения сцинтиллятора от Задачей, решаемой предложенным изобретением, является расширение области применения сцинтиллятора такого типа. Техническим результатом от использования предлагаемого технического решения является обеспечение возможности смещения спектра оптического излучения в зеленую и красную части спектра, что дает возможность обеспечить регистрацию интенсивности излучений с использованием фотодиодов на основе кремния, а также повышение относительного светового выхода излучения сцинтиллятора при использовании в детекторах с большой чувствительной поверхностью для регистрации низких уровней интенсивности излучений. Для достижения технического результата предложен пленочный сцинтиллятор из поликарбоната, наполненного сцинтиллирующим люминофором из порошкообразного кристаллического орто-силикатогерманата иттрия, гадолиния, лютеция и церия, имеющего общую стехиометрическую формулу Y2-x-y-zGdx·LuyCez O3(SiO2)1-p(GeO2)p с интервалами стехиометрических индексов: x=0,01 y=0,01 z=0,005 p=0 Дополнительно в качестве сцинтиллирующего люминофора применен порошкообразный кристаллический орто-алюминат иттрия, гадолиния, церия, имеющий общую стехиометрическую формулу Y3-m-nGdm·Cen·(AlGa)5O12 с интервалами стехиометрических индексов m=0,01 n=0,01 при этом максимум длины волны оптического излучения смеси люминофоров находится в диапазоне от 420 до 550 нм, а длительность сцинтилляций от 30 до 40 нс. Соотношение кристаллического орто-силикатогерманата иттрия, гадолиния, лютеция и церия и орто-алюмината иттрия, гадолиния, церия в смеси составляет от 92-98% до 8-2% массовых соответственно (или от 98:2 до 92:8). Концентрация смеси сцинтиллирующего люминофора в пленке составляет от 10 до 75% массовых. Пояснение физических особенностей предложенного сцинтиллятора. В состав предложенного пленочного сцинтиллятора входит бинарная (двойная) композиция излучающих материалов. Первый из этих материалов – указанный ортосиликат – имеет микрокристаллическую зернистую структуру и люминесцирует фиолетово-синим светом только при облучении его электронами или высокоэнергетическими фотонами гамма-излучения. Второй излучающий компонент – ортоалюминат иттрия, гадолиния, церия не только люминесцирует в высокоэнергетических фотонных полях, но дополнительно флюоресцирует при возбуждении его коротковолновыми квантами видимого света (фиолетовым или синим светом). Экспериментально установлено, что введение в состав основного излучающего вещества сцинтиллятора люминофора на основе орто-силиката иттрия-церия редкоземельных ионов, таких как гадолиний (Gd) и лютеций (Lu), резко повышает конверсионную эффективность преобразования детектора. Так введение в состав орто-силиката иттрия-церия от x=0,01 доли иона гадолиния до x=0,5 позволяет на 25-30% повысить конверсионную эффективность при облучении детектора фотонным или бета-излучением с энергией E Одной из физических причин подобного явления является близость энергии K-орбиты иона Gd с энергией возбуждающего фотонного излучения. Увеличение значения коэффициента 0,5 При изменении величины стехиометрического коэффициента у от y=0,01 до y=0,6 значение конверсионной эффективности возрастает на 36-42% для возбуждающей энергии квантов 60 кэВ Одновременно экспериментально установлено, что изменение стехиометрического индекса z в интервале от 0,005 до 0,05 позволяет увеличить полуширину спектрального максимума сцинтиллирующего люминофора от
Второй излучающий материал имеет общую стехиометрическую формулу Y3-m-nGdm·Cen·(AlGa)5O12. Этот материал имеет кубическую кристаллическую решетку со структурой граната и принадлежит к пространственной группе J3d. Редкоземельные элементы Y, и/или Gd, и/или Се образуют катодную подрешетку, в которой координационное число ионов КИ=8. В координационную сферу Y и Gd входят алюмооксидные тетраэдры [AlO4], при том, что связь между ионом лантаноида и алюминия реализуется через мостиковый кислород. Параметр кристаллической решетки ортоалюмината составляет a=12,01 Å и увеличивается при росте величин стехиометрических индексов «p» и «q». Так при введении в состав алюмината Gd со значением p=0,5 атомных долей параметр кристаллической решетки увеличивается до a=12,20 Å. Увеличение содержания [Gd]=1 атомной доли (соответственно с уменьшением концентрации [Y]=1,95 атомной доли) параметр кристаллической решетки увеличивается до a=12,45 Å. Изменение концентрации иона Ce+3 в составе матрицы люминофора от [Ce]=0,01 до [Ce]=0,05 изменяет величину параметра кристаллической решетки на Спектрально-кинетические характеристики орто-алюминатного люминофора изменяются следующим образом. Излучение активирующего иона Ce+3 для состава Y2,96Gd0,01·Ce0,003·(Al,Ga)5O12 находится в интервале В ходе эксперимента также обнаружен коротковолновый сдвиг спектрального максимума излучения Ce+3 в результате частичной замены иона алюминия Al+3 на ионы галлия Ga+3. Подобный сдвиг составляет от 1 до 2 нм на единицу введенного галлия. Одновременно при введении галлия возрастает атомный номер матрицы сцинтиллирующего люминофора, поэтому преимущественно был использован состав материала Y3-m-nGdm·Cen·(Al2,0Ga3,0)O12. Экспериментально установлено, что введение в состав пленочного сцинтиллятора второго излучающего материала на основе ортоалюмината иттрия-гадолиния позволяет существенно увеличить световыход прибора и повысить светоотражение. Особенно существенно этот эффект наблюдается при высоких энергиях квантов возбуждающего излучения. На основании проведенных исследований второго сцинтиллирующего люминофора составлена таблица 2 спектрально-кинетических параметров.
Спектральный максимум излучения второго люминофора имеет диапазон изменения от При создании изобретения, в ходе экспериментов, было обнаружено, что при сочетании указанных двух излучающих материалов возникает совершенно неочевидный синергетический эффект, заключающийся в увеличении светового выхода предложенного сцинтиллятора в сравнении со стандартным сцинтиллятором-прототипом. Это увеличение светового выхода, как было показано при работе над изобретением, определяется целым рядом параметров, конкретно: – массовым соотношением между двумя излучающими компонентами, образующими наполнение предложенного сцинтиллятора; – соотношением дисперсностей (размеров зерен) излучающих компонентов; – соотношением концентраций ионов иттрия и гадолиния в основе флюоресцирующего компонента – ортоалюмината иттрия, гадолиния, церия. Экспериментально установлен оптимальный дисперсный состав люминесцирующего материала из ортосиликогерманата иттрия-гадолиния-лютеция-церия, составляющий dcp=10÷16 мкм, d90 Оптимальная дисперсность флюоресцирующего компонента была определена путем проведения серии, свыше ста, оптико-спектральных экспериментов. Для этих экспериментов использовался стандартный люминесцентный материал состава Y1,65Gd0,2Lu0,1Ce0,05(SiO2)0,99(GeO2)0,1, имеющий средний диаметр зерен dcp=12 мкм и d90=18 мкм. Этот люминофор обозначен нами в таблице 1 как h-1. К указанному люминофору добавлялось различное количество второго флюоресцирующего компонента состава Y2,65Gd0,30Ce0,05Al5O12, Ga=0 с различной дисперсностью. Этот материал обозначен в таблице 1 как Ph-2. Из двухкомпонентной смеси с использованием поликарбоната изготавливалась сцинтиллирующая пленка, на которой измерялись оптико-спектральные характеристики: – световыход по отношению к NaJ (T1), – доминантная длина волны сцинтиллирующего излучения – длительность сцинтилляций, нс. Результаты эксперимента представлены в таблице 3, где сопоставлены данные по пленочному сцинтиллятору, в котором вместо однокомпонентного люминофора излучение исходит из двухкомпонентной композиции.
Как следует из данных таблицы 3 световой выход полученных модельных сцинтилляторов возрастает с приростом концентрации флюоресцирующего излучающего материала, однако, этот прирост не линеен по отношению к росту концентрации флюоресцирующего излучателя. При росте концентрации второго люминофора Y3-p-qGdpCeqAl5O12 от 1% массового прирост составляет 36%, при этом оптимальная концентрация флюоресцирующего материала находится в интервале значений от 8% до 1% массового. Вероятным механизмом прироста излучения двухкомпонентного сцинтиллятора является перепоглощение первичного излученного фиолетово-синего свечения, исходящего из ортосиликогерманатного люминофора, зерна которого контактируют с зернами флюоресцентного материала со структурой граната. При равенстве средних диаметров зерен этих материалов (dcp Следовательно, на выходе из сцинтиллятора генерируется двухквантовое излучение, в котором превалируют фиолетово-синие кванты. Экспериментально доказано, что различные фотоприемники измеряют при фиксации этого излучения различную по величине суммарную длину волны излучения. Например, коротковолновыми ФЭУ (фотоэлектронный умножитель) фиксируется суммарная длина волны излучения Эффект значительного прироста эффективности возникает, как следует из данных таблицы 3, при использовании в двухкомпонентном сцинтилляторе флюоресцентного излучающего материала из ортоалюмината иттрия, гадолиния церия с очень маленьким размером зерен, dcp При изготовлении сцинтиллятора двухкомпонентную смесь люминофоров распределяют в растворе поликарбоната. Формирование сцинтиллирующий полимерной ленты проводят методом литья на подвижную металлическую подложку при скорости ее передвижения до 5 м/ч. Отлитое покрытие высушивают инфракрасными лампами в течение 1 ч. Оптимально, отлитые пленочные покрытия имеют ширину 200 мм при толщине от 40 до 220 мкм. Предложенный пленочный сцинтиллятор имеет желтоватую окраску и интенсивно флюоресцирует под действием рассеянного дневного света. В процессе экспериментальной работы над изобретением была изучена возможность повышения конверсионной эффективности сцинтиллятора при высоких энергиях электронов и гамма-квантов. В качестве основного механизма повышения эффективности нами был использован прием увеличения среднего эффективного номера Z излучающих материалов, используемых в сцинтилляторе. Так, среднее значение атомного номера ортосиликогерманата Y2-x-y-zGdxLuyCezO3(SiO2)1-p[GeO2]p составляет Zcp Полученное тонкопленочное сцинтиллирующее покрытие на основе двойной смеси люминофоров предназначено для создания специальных детектирующих блоков с применением оптически прозрачных светосборников, геометрические размеры которых выбираются из условий их использования. В процессе испытаний нового сцинтиллятора были проведены термические исследования его стабильности, которые показали его высокие качества. В режиме малых, средних и больших доз радиоактивного излучения (электроны и гамма-кванты) установлены высокие параметры его радиационной устойчивости. Установочная серия новых сцинтилляторов подготовлена в настоящее время к выпуску.
Формула изобретения
1. Пленочный сцинтиллятор для регистрации бета- и фотонного излучений, выполненный из поликарбоната, наполненного сцинтиллирующим люминофором из порошкообразного кристаллического ортосиликатогерманата иттрия, гадолиния, лютеция и церия, имеющего общую стехиометрическую формулу 2. Пленочный сцинтиллятор для регистрации бета- и фотонного излучений по п.1, отличающийся тем, что соотношение кристаллического ортосиликатогерманата иттрия, гадолиния, лютеция и церия и ортоалюмината иттрия, гадолиния, церия в смеси составляет от 92-98 до 8-2 мас.% соответственно. 3. Пленочный сцинтиллятор для регистрации бета- и фотонного излучений по п.1, отличающийся тем, что концентрация смеси сцинтиллирующих люминофоров в пленке составляет от 10 до 75 мас.%.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||