Патент на изобретение №2387979

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2387979 (13) C2
(51) МПК

G01N23/04 (2006.01)
G01N21/01 (2006.01)
A61B1/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.09.2010 – действует

(21), (22) Заявка: 2008122620/28, 07.06.2008

(24) Дата начала отсчета срока действия патента:

07.06.2008

(43) Дата публикации заявки: 20.12.2009

(46) Опубликовано: 27.04.2010

(56) Список документов, цитированных в отчете о
поиске:
RU 2168166 C2, 27.05.2001. RU 2239179 C1, 27.10.2004. SU 810205 A1, 07.03.1981. US 6475168 В1, 05.11.2002. US 4523806 A, 18.06.1985.

Адрес для переписки:

109431, Москва, Жулебино, ул. Авиаконструктора Миля, 15, корп.1, кв.124, В.Я.Маклашевскому

(72) Автор(ы):

Кеткович Андрей Анатольевич (RU),
Маклашевский Виктор Яковлевич (RU),
Базанова Наталия Васильевна (RU)

(73) Патентообладатель(и):

Маклашевский Виктор Яковлевич (RU)

(54) РЕНТГЕНООПТИЧЕСКИЙ ЭНДОСКОП

(57) Реферат:

Использование: для неразрушающего контроля изделий и материалов. Сущность заключается в том, что рентгенооптический эндоскоп содержит корпус с расположенными в нем рентгеновским и оптическим каналами, при этом в рентгенооптический эндоскоп дополнительно введена вторая цветная ПЗС-матрица размером В×В, установленная на оси объектива оптического канала в плоскости его изображения, фокусное расстояние этого объектива f0 выбирается с учетом соотношения

f0=L·B/D, где L – минимальное расстояние от входного торца фокона до объекта, D – диаметр этого торца, а угол излучения осветителя оптического канала выбирается из условия W=arctg(B/2f0), причем видеоинформация с обеих ПЗС-матриц поступает на вход компьютера с цветным дисплеем, с возможностью одновременного или последовательного просмотра рентгеновского и оптического изображений объекта в различных режимах их цифровой обработки и совмещения на экране дисплея. Технический результат: обеспечение возможности согласования существенно различных характеристик рентгеновского и оптического каналов с помощью одной ПЗС-матрицы. 3 ил.

Изобретение относится к области неразрушающего контроля материалов и изделий, а более конкретно – к устройствам рентгеновской и/или изотопной дефектоскопии объектов, находящихся в труднодоступных полостях.

Известен рентгенооптический эндоскоп, который состоит из двух расположенных в едином корпусе и конструктивно объединенных каналов – рентгеновского и оптического. Устройство позволяет формировать, передавать и воспроизводить одновременно или последовательно рентгеновское и оптическое изображения объекта с помощью единой телевизионной системы [1].

Недостатки данного устройства – сложность согласования существенно различных спектральных, масштабных, яркостных, резкостных и других характеристик рентгеновского и оптического каналов с помощью одной ПЗС-матрицы. Кроме того, схема сведения изображений каналов сложна в юстировке и эксплуатации.

Цель изобретения – устранение этих недостатков.

Для этого в устройстве для комплексного рентгеновского и оптического контроля объектов, находящихся в труднодоступных полостях, содержащее корпус с расположенными в нем рентгеновским и оптическим каналами, рентгеновский канал содержит источник рентгеновского излучения, фокон с расположенным на его торце рентгенолюминофором, высокочувствительную черно-белую ПЗС-матрицу размером А×А, и два объектива, оптические оси которых совпадают с осью фокона, а фокальные плоскости совмещены соответственно с выходным торцом фокона и плоскостью черно-белой ПЗС-матрицы, причем фокусные расстояния этих объективов F1 и F2 находятся в соотношении F1/F2=d/A, где d – выходной диаметр фокона, а между объективами существует телецентрический ход лучей, оптический канал состоит из объектива с фокусным расстоянием f0, блока осветителя с лампой, оптического аттенюатора и световода, причем при визуальном контроле объекта он освещается с помощью зеркала, световода от лампы, дополнительно введена вторая цветная ПЗС-матрица размером В×В, установленная на оси объектива оптического канала в плоскости его изображения, фокусное расстояние этого объектива f0 выбирается с учетом соотношения f0=L·B/D, где L – минимальное расстояние от входного торца фокона до объекта, D – диаметр этого торца, а угол излучения осветителя оптического канала выбирается из условия W=arctg(B/2f0), причем видеоинформация с обеих ПЗС-матриц поступает на вход компьютера с цветным дисплеем, с возможностью одновременного или последовательного просмотра рентгеновского и оптического изображений объекта в различных режимах их цифровой обработки и совмещения на экране дисплея.

Схема эндоскопа поясняется чертежом (фиг.1), на котором изображены источник рентгеновского излучения 1, исследуемый объект 2 и элементы рентгеновского и оптического каналов.

Рентгеновский канал состоит из фокона 6 с расположенным на его торце рентгенолюминофором 5, защищенным фольгой 4, коллиматорного объектива 7 с фокусным расстоянием f1, фокальная плоскость которого совпадает с выходным торцом фокона 6, второго объектива 8 с фокусным расстоянием f2 и высокочувствительной черно-белой ПЗС-матрицы 9, установленной в фокальной плоскости объектива 8.

Оптический канал состоит из объектива 10 с фокусным расстоянием f0, в плоскости изображения которого расположена цветная ПЗС-матрица 11 размером В×В, блока осветителя 16 с лампой 17, оптическим аттенюатором 15 и световодом 14. Совмещение и обработка изображений оптического и рентгеновского каналов осуществляется с помощью компьютера 12 с дисплеем 13.

Рентгенооптический эндоскоп работает следующим образом. При включенном источнике рентгеновского излучения на рентгенолюминофоре 5 возникает изображение внутренней структуры объекта 2, которое с помощью фокона 6, объективов 7 и 8 поступает на ПЗС-матрицу 9, видеосигнал с которой поступает в компьютер 12 и, после обработки, визуализируется на дисплее 13.

Фокусные расстояния объективов 7 и 8 выбраны такими, чтобы изображение выходного торца фокона диаметром d полностью вписывалось в растр ПЗС-матрицы 9, то есть имеет место соотношение f1/f2=d/A, справедливое для телецентрического хода лучей между объективами 7 и 8.

При визуальном контроле объекта 2 он освещается с помощью зеркала 3, световода 14 от лампы 17. Изображение объекта 2 с помощью зеркала 3 и объектива 10 формируется на ПЗС-матрице 11, поступает в компьютер 12 и наблюдается на дисплее 13.

На фиг.2 представлена расчетная схема для определения фокусного расстояния объектива 10. Расстояние L от объекта 2 до объектива 10 выбирается с учетом минимального расстояния от входного торца фокона до внутренней поверхности объекта 2, которое определяется из конструктивных соображений, с учетом формы объекта и др. факторов.

Размер зоны контроля рентгеновского канала, очевидно, равен диаметру входного торца фокона. Фокусное расстояние объектива 10 выбирается таким, чтобы изображение этой зоны полностью вписалось в растр ПЗС-матрицы 11 размером В. Следовательно, увеличение объектива должно быть равно М=B/D. Объектив 10 не должен экранировать рентгеновский пучок, падающий на вход фокона 6. Поэтому расстояние z от объекта до переднего фокуса объектива 10 равно zL, а его увеличение равно

, .

Приравнивания эти уравнения, получим окончательно f0=B·L/D.

Угол излучения осветителя W, необходимый для полного освещения зоны, просвечиваемой рентгеновским излучением, выбирается из очевидного соотношения W=arctg(B/2f0).

Различные варианты совмещения изображений рентгеновского оптического каналов показаны на рисунке 3, а, б, в, г.

Программа обработки этих изображений выбирается с учетом получения максимума дефектоскопической информации в каждом из них.

Литература

1. Патент РФ 2168166.

2. Аленко М.И. и др. Задачник по прикладной оптике, Москва, Высшая школа, 2003 г., 591 стр.

Формула изобретения

Устройство для комплексного рентгеновского и оптического контроля объектов, находящихся в труднодоступных полостях, содержащее корпус с расположенными в нем рентгеновским и оптическим каналами, рентгеновский канал содержит источник рентгеновского излучения, фокон с расположенным на его торце рентгенолюминофором, высокочувствительную черно-белую ПЗС-матрицу размером А×А и два объектива, оптические оси которых совпадают с осью фокона, а фокальные плоскости совмещены соответственно с выходным торцом фокона и плоскостью черно-белой ПЗС-матрицы, причем фокусные расстояния этих объективов f1 и f2 находятся в соотношении f1/f2=d/A, где d – выходной диаметр фокона, а между объективами существует телецентрический ход лучей, оптический канал состоит из объектива с фокусным расстоянием f0, блока осветителя с лампой, оптического аттенюатора и световода, причем при визуальном контроле объекта он освещается с помощью зеркала, световода от лампы, отличающееся тем, что в него дополнительно введена вторая цветная ПЗС-матрица размером В×В установленная на оси объектива оптического канала в плоскости его изображения, фокусное расстояние этого объектива f0 выбирается с учетом соотношения f0=L·B/D, где L – минимальное расстояние от входного торца фокона до объекта, D – диаметр этого торца, а угол излучения осветителя оптического канала выбирается из условия W=arctg(B/2f0), причем видеоинформация с обеих ПЗС-матриц поступает на вход компьютера с цветным дисплеем с возможностью одновременного или последовательного просмотра рентгеновского и оптического изображений объекта в различных режимах их цифровой обработки и совмещения на экране дисплея.

РИСУНКИ

Categories: BD_2387000-2387999