Патент на изобретение №2387976

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2387976 (13) C1
(51) МПК

G01N21/45 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.09.2010 – действует

(21), (22) Заявка: 2009104290/28, 09.02.2009

(24) Дата начала отсчета срока действия патента:

09.02.2009

(46) Опубликовано: 27.04.2010

(56) Список документов, цитированных в отчете о
поиске:
RU 2344409 C1, 20.01.2009. SU 746260 A, 07.07.1980. SU 1182344 A, 30.09.1985. SU 934319 A, 07.06.1982. RU 2046321 C1, 20.10.1995. JP 2150734 A, 11.06.1990.

Адрес для переписки:

194021, Санкт-Петербург, ул. Политехническая, 22, ФГУП “НИИТ”, Патентный отдел

(72) Автор(ы):

Умбиталиев Александр Ахатович (RU),
Ресовский Владимир Алексеевич (RU),
Кузьмин Юрий Викторович (RU),
Бутылева Елена Анатольевна (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Научно-исследовательский институт телевидения” (RU)

(54) СПОСОБ ВИЗУАЛИЗАЦИИ ДИНАМИЧЕСКИХ ПРОЦЕССОВ В ЖИДКОСТЯХ И ГАЗАХ

(57) Реферат:

Изобретение относится к оптическому приборостроению и предназначено для исследования оптических неоднородностей в прозрачных средах и получения изображения градиентных объектов. Способ заключается в подсвечивании реальной среды импульсным излучением неодимового лазера 1, пространственно-временной селекции излучения обратного рассеяния затвором 7 телевизионной камеры 4, синхронизированным с импульсным режимом лазера, получении изображения в плоскости ПЗС-матрицы 5 телевизионной камеры с конечного расстояния, определяемого заданным режимом временной селекции, ограничении боковых пучков в фокальной плоскости объектива 3 телевизионной камеры для увеличения контрастности изображения. Далее производят наблюдение и регистрацию полученного изображения на дисплее персонального компьютера. Процесс наблюдения осуществляют через иллюминатор 10. Изобретение позволяет получать изображения оптических неоднородностей среды с больших расстояний в динамическом режиме и в неограниченном объеме исследуемой среды. 1 з.п. ф-лы, 1 ил.

Предлагаемое техническое решение относится к оптическому приборостроению, а именно к способам и устройствам для исследования оптических неоднородностей в прозрачных средах и получения изображения градиентных объектов.

Известны способы получения изображения оптических неоднородностей в средах, основанные на теневом методе визуализации прозрачных неоднородностей (Л.А. Васильев. «Теневые методы», М., Наука, 1969 г.; Н.Г.Ерлов. «Оптика моря», Гидрометеоиздат, Л., 1980 г.).

Недостатком известных способов и различных модификаций устройств, их реализующих, является низкая разрешающая способность оптической системы, обусловленная особенностями визуализации прозрачных неоднородностей, принципиально присущими теневому методу вследствие наличия теневого ножа.

Наиболее близким к предлагаемому по технической сути является решение, описанное в патенте РФ на изобретение 2344409, приоритет от 02.10.2007 г. Известный способ реализуется с помощью устройства, содержащего систему излучения, иллюминаторы, ограничивающие просмотровый объем, отражатель, проекционные объективы, формирующие изображения на ПЗС-матрице телевизионной камеры.

Недостатком этого решения является ограниченный просмотровый объем среды, поскольку устройство необходимо помещать непосредственно в место нахождения исследуемых неоднородностей, а также необходимость выноса отражателя за борт судна, что усложняет процесс измерения.

Техническим результатом предлагаемого способа является получение изображения оптических неоднородностей среды с больших расстояний в динамическом режиме и в неограниченном объеме исследуемой среды.

Это достигается тем, что способ визуализации динамических процессов в жидкостях и газах, включающий метод пространственно-временной селекции лазерного излучения, отличается тем, что в заявляемом способе для визуализации неоднородностей среды используют обратное рассеяние лазерного излучения, для чего осуществляют подсвечивание реальной среды импульсным излучением лазера, затем производят пространственно-временную селекцию излучения обратного рассеяния затвором телевизионной камеры, синхронизированным с импульсным режимом лазера, получают изображение в плоскости ПЗС-матрицы телевизионной камеры с конечного расстояния, определяемого заданным режимом пространственно-временной селекции, ограничивают боковые пучки в фокальной плоскости объектива телевизионной камеры для увеличения контрастности изображения и далее производят наблюдение и регистрацию полученного изображения.

Преимущества предлагаемого способа заключаются в возможности получения изображения неоднородностей среды с большого расстояния от устройства, в возможности изменения дистанции до исследуемого среза водной среды, в отсутствии необходимости размещения элементов конструкции устройства в исследуемой среде.

Сущность изобретения поясняется чертежом, где представлена функциональная схема устройства, с помощью которого реализуется предлагаемый способ.

Способ реализуют следующим образом.

Устройство представляет собой телевизионную систему с лазерной подсветкой с пространственно-временной селекцией. Оно содержит источник 1 излучения – неодимовый лазер с =0,532 мкм, работающий в импульсном режиме с регулируемой частотой, поворотное устройство 2, состоящее из двух зеркал и обеспечивающее совмещение оси лазерного луча и длиннофокусного объектива 3 телевизионной камеры 4 с ПЗС-матрицей 5, диафрагмой 6, установленной в фокальной плоскости объектива, и затвором 7 телевизионной камеры, синхронизированным с импульсным режимом лазера. Телевизионная камера 4 соединена с персональным компьютером 8 и дисплеем 9. Процесс наблюдения осуществляют через герметичный иллюминатор 10, конструктивно связанный с телевизионной системой.

Процесс измерения производят следующим образом.

Луч лазера 1 через поворотные зеркала 2, обеспечивающие совмещение оси луча с оптической осью объектива 3 и иллюминатор 10, освещает исследуемую среду. Рассеянное назад излучение проходит через иллюминатор 10 и фокусируется объективом 3 в фокальной плоскости, где установлена диафрагма 6, ограничивающая боковые пучки, обеспечивая повышение контраста изображения. Изображение формируется в плоскости ПЗС-матрицы 5 телевизионной камеры 4. Затвор 7 телевизионной камеры открывается с задержкой t относительно фронта импульса лазера, что обеспечивает пространственно-временную селекцию обратного рассеянного излучения из ближней зоны, уменьшая фоновую засветку, тем самым увеличивая контраст изображения. Регулировкой времени задержки t обеспечивается получение изображения толщи среды на разных расстояниях. При изменении расстояния до наблюдаемого объема обеспечивается дополнительная фокусировка изображения, поскольку ПЗС-матрица должна находиться в плоскости, сопряженной с плоскостью наблюдения. Сигнал телевизионной камеры 4 выводится на дисплей 9 персонального компьютера 8 как в динамическом режиме, так и в режиме стоп-кадра.

Использование заявленного решения, по сравнению со всеми известными средствами аналогичного назначения, обеспечивает следующие преимущества:

– получение изображения неоднородностей среды с большого расстояния в динамическом режиме;

– возможность изменения дистанции до исследуемого среза среды;

– исключение влияния вибраций среды на элементы прибора и соответственно на качество изображения.

Результаты проведенных исследований могут быть использованы при создании устройств наблюдения градиентных объектов различного происхождения.

Формула изобретения

1. Способ визуализации динамических процессов в жидкостях и газах, заключающийся в освещении исследуемой среды излучением лазера, фокусировке излучения в фокальной плоскости объектива телевизионной камеры и формировании изображения в плоскости ПЗС-матрицы телевизионной камеры, отличающийся тем, что используют обратное рассеяние импульса излучения лазера, ограничивают боковые пучки в фокальной плоскости объектива телевизионной камеры, а затвор телевизионной камеры открывают с задержкой относительно фронта импульса лазера, которую регулируют для получения изображений толщи среды на разных расстояниях для пространственно-временной селекции излучения обратного рассеяния.

2. Способ по п.1, отличающийся тем, что импульсное лазерное излучение генерируют с помощью неодимового лазера.

РИСУНКИ

Categories: BD_2387000-2387999