Патент на изобретение №2385885
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ПИРИДИНИЕВЫЙ ИОНИТ ДЛЯ СОРБЦИИ УРАНА ИЗ РАСТВОРОВ И ПУЛЬП
(57) Реферат:
Настоящее изобретение относится к сорбционной гидрометаллургии урана. Описан пиридиниевый ионит на основе сополимера стирола и дивинилбензола для сорбции урана из растворов и пульп, отличающийся тем, что в состав исходной полимерной матрицы ионита дополнительно вводят метакриловую кислоту в количестве 3,0-6,0 мас.%. Технический результат – ионит, обладающий улучшенными десорбционными характеристиками, улучшение технико-экономических показателей сорбционно-десорбционного процесса извлечения урана из раствора. 1 з.п. ф-лы, 3 табл.
Заявляемый ионит относится к сорбционной гидрометаллургии урана и может быть использован для извлечения урана из растворов и пульп.
К недостаткам вышеуказанных ионитов относятся недостаточно высокая весовая (мг/г) и объемная (мг/см3) емкости по урану, необходимость использования для десорбции урана высококонцентрированных растворов кислот и солей. Это приводит к большому расходу сорбентов и реагентов при переработке сернокислых растворов и пульп и в целом – к снижению эффективности этого процесса. Наиболее близким по технической сущности и достигаемому результату при использовании является пиридиниевый ионит на основе сополимера стирола и дивинилбензола марки АМП, который применяется для сорбции урана из растворов и пульп (Химия урана. Под ред. Б.Н.Ласкорина. М.: Наука, 1981, с.58-63). Недостатками этого ионита являются: – сравнительно невысокая емкость по урану; – большая продолжительность контакта насыщенного ураном ионита с раствором элюента, например сернокислым раствором селитры, на операции десорбции урана; – большой объем (выход) товарной фракции десорбата; – сравнительно высокая остаточная емкость ионита по урану после его десорбции. Техническим результатом предлагаемого изобретения является устранение вышеуказанных недостатков. Технический результат достигается тем, что в состав пиридиниевого сополимера долнительно вводят метакриловую кислоту в количестве 3,0-6,0 мас.%, причем ее вводят в ионит на стадии получения сополимера и/или путем обработки сополимера смесями дозированных количеств исходных мономеров с последующей полимеризацией продуктов обработки сополимера. Заявляемый ионит получают следующим образом. Низкосшитый стирольный или акрилатно-стирольный сополимер, являющийся исходной (базовой) полимерной матрицей, получают суспензионной сополимеризацией в среде водного раствора картофельного крахмала мономерной смеси, состоящей из стирола, технического дивинилбензола (ДВБ), этилстирола (ЭС), инициатора полимеризации перекиси бензоила (ПБ) и порообразователя, или мономерной смеси, включающей стирол, ДВБ, ЭС, ПБ, порообразователь и метакриловую кислоту (МАК). Полученную базовую матрицу обрабатывают смесью дозированных количеств стирола, ДВБ, ЭС, ПБ и МАК и продукт обработки подвергают вторичной полимеризации в определенных условиях. Такая обработка базовой матрицы с последующей полимеризацией продукта обработки может осуществляться одно- или двукратно. Дальнейшие стадии получения пиридиниевого ионита заключаются в хлорметилировании сополимеров стирола, ДВБ и МАК и аминировании хлорметилированных сополимеров пиридином. Полученный ионит после перевода в SO4-форму используется для сорбции урана. Пример 1. Для сорбции урана из сернокислого продуктивного раствора подземного выщелачивания (ПВ), содержащего, г/л: 0,05 урана; 1,3 железа (Fe2++Fe3+); 0,2 кальция; 0,08 магния; 0,07 кремния; 2,1 алюминия; 3,7 серной кислоты, используют пиридиниевые иониты с различным содержанием МАК в полимерной матрице. Для сравнения сорбцию урана из того же раствора ведут пиридиниевым анионитом АМП, не содержащим в сополимере МАК (прототип). Сорбцию урана ведут в статических условиях, контактируя иониты в SO4-форме с раствором в течение 20 ч при постоянном механическом перемешивании, соотношении объемов раствора и ионита 3000:1 и температуре 18-20°С. Затем ионит отделяют от раствора, промывают водой, сушат при температуре 80 -85°С. В сухих ионитах после их разложения методом «мокрого сжигания» определяют содержание урана. Данные по весовой (мг/г) и объемной (мг/мл) емкостям испытанных ионитов приведены в табл.1. Весовая емкость по урану (мг/г) заявляемого ионита Россион с содержанием МАК в сополимере 3,0-6,6 мас.% превышает емкость прототипа. В то же время объемная емкость прототипа (мг/см3), которая определяет параметры технологического процесса сорбции урана, заметно ниже объемной емкости заявляемого ионита с содержанием МАК 3,0-6,0 мас.%. Увеличение содержания МАК свыше 6,0 мас.% приводит к значительному увеличению удельного объема набухшего в перерабатываемом растворе ионита и вследствие этого к резкому снижению его объемной емкости, что неприемлемо для технологических целей.
Аналогичные результаты получены при сорбции урана заявляемым ионитом из сернокислой пульпы от выщелачивания урановых руд, содержащих, г/л: 1,0 урана; 0,23 кремния; 4,0 железа (II); 3,5 железа (III); 0,2 кальция; 2,0 алюминия; 0,5 магния и имеющих рН 1,7. Сорбцию вели в статическом режиме в вышеописанных условиях. Полученные данные приведены ниже (табл.2).
Таким образом, введение в состав полимерной матрицы пиридиниевого ионита метакриловой кислоты в количестве 3,0-6,0 мас.% позволяет повысить весовую и объемную емкости ионита по урану при сорбции его как из растворов, так и из пульп, улучшить показатели сорбционного процесса, снизить единовременную загрузку ионита и уменьшить количество сорбционных аппаратов. Введение МАК в состав заявляемого ионита позволяет не только повысить его емкость по урану, но и улучшить технологические параметры процесса десорбции урана с ионита в сравнении с прототипом. Пример 2. С образцов заявляемого ионита, насыщенного ураном из продуктивного раствора ПВ вышеуказанного состава, в динамических условиях ведут десорбцию урана, пропуская десорбирующий раствор через слой ионита высотой 0,5 м в колонке со скоростью 1 объем раствора к объему сорбента в час при температуре 20°С. Вытекающий из колонки десорбат отбирают фракциями по 0,5 объема к объему сорбента в колонке и определяют в каждой фракции содержание урана. По полученным данным строят выходную кривую десорбции урана, по которой определяют ориентировочный выход (объем) товарной фракции десорбата и ожидаемую концентрацию урана. В качестве десорбирующего раствора используют 10-процентный раствор аммиачной селитры с добавкой 1% серной кислоты (100 г/л NH4NO3+10 г/л H2SO4). В аналогичных условиях ведут десорбцию урана тем же раствором с прототипа – пиридиниевого ионита АМП. Полученные данные представлены в табл.3.
Судя по приведенным данным, заявляемый ионит в сравнении с прототипом обладает значительно лучшими десорбционными характеристиками, что обеспечивает: – лучшую кинетику десорбции урана; – меньшую остаточную емкость по урану после десорбции; – меньший объем (выход) товарной фракции десорбата; – более высокую концентрацию урана в товарном десорбате. Все вышеперечисленное позволяет в целом улучшить технико-экономические показатели сорбционно-десорбционного процесса извлечения урана из раствора: – снижение единовременной загрузки ионита и его расхода; – сокращение расхода реагентов на десорбцию урана; – уменьшение количества технологического оборудования.
Формула изобретения
1. Пиридиниевый ионит на основе сополимера стирола и дивинилбензола для сорбции урана из растворов и пульп, отличающийся тем, что в состав исходной полимерной матрицы ионита дополнительно вводят метакриловую кислоту в количестве 3,0-6,0 мас.%. 2. Пиридиниевый ионит по п.1, отличающийся тем, что метакриловую кислоту в ионит вводят на стадии получения сополимера и/или путем обработки сополимера смесями дозированных количеств исходных мономеров с последующей полимеризацией продуктов обработки сополимера.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||