Патент на изобретение №2385855
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ПЕРЕРАБОТКИ ПРОДУКТОВ ФЕРМЕНТАЦИИ РАСТИТЕЛЬНОЙ БИОМАССЫ В АЛКАНОВЫЕ УГЛЕВОДОРОДЫ
(57) Реферат:
Изобретение относится к способу переработки продуктов ферментации растительной биомассы в алкановые углеводороды фракции С4-С10 путем реакции кросс-конденсации в присутствии Fe2O3-MgO/Al2O3 и Pt/Al2O3 катализатора при соотношении Fe:Mg:Pt=13:2:1, которую ведут при температуре 320-370°С, давлении аргона 1-5 МПа и удельной скорости подачи исходного сырья на катализатор, равной 0,4-0,8 дм3/ч·дм3 кат. Применение настоящего способа позволяет снизить газообразование и увеличить выход насыщенных углеводородов. 3 табл.
Изобретение относится к области гетерогенно-каталитических превращений органических соединений, а именно к каталитическому превращению смесей алифатических спиртов в смесь углеводородов алкан-олефинового ряда, в частности С4-С10 углеводородов, являющихся эффективными добавками к углеводородным топливам различного назначения. Начало XXI века многие специалисты характеризуют как окончание эры дешевой нефти. В связи с растущими энергетическими потребностями человечеству приходится искать альтернативные виды топлив. К альтернативным относятся вещества, которые смогут применяться в двигателях внутреннего сгорания или энергетических установках вместо топлив нефтяного происхождения. Наибольшее распространение в настоящее время получили двигатели, работающие на невосполнимых видах топлив (бензин, дизель, природный газ), по существующим оценкам как минимум еще до 2030 человечество будет использовать углеводородное топливо в двигателях внутреннего сгорания [1]. Вместе с этим, с целью улучшения экологии продолжается тенденция по ужесточению требований к составу топлива, связанное главным образом с ограничением использования ароматических углеводородов. В этой связи повышается актуальность и значимость альтернативных процессов, направленных на получение алкановых и олефиновых углеводородов. В последние годы внимание исследователей всего мира обращено на спиртовые топлива, преимущества и недостатки их использования в двигателях внутреннего сгорания. Наибольшее распространение нашли низшие алифатические спирты: метанол и этанол. Высшие спирты рассматриваются в качестве стабилизирующих добавок. В настоящее время метанол синтезируют из синтез-газа, этанол получают прямой гидратацией этилена, а также, все в большем количестве, из возобновляемого сырья – растительной биомассы [2, 3]. В зависимости от условий ферментативного сбраживания растительной массы состав получаемой спиртовой смеси может быть различен. Главным продуктом является этанол, после очистки от клеток и других компонентов культуральной жидкости (остатков субстрата) получаемая спиртовая смесь содержит ~90% этанола, остальное представляет собой так называемое сивушное масло [4]. Состав сивушного масла этанольного брожения биомассы представлен ниже:
Однако существует возможность использовать продукты ферментации биомассы в качестве сырья для получения синтетического бензина или его высокооктановых компонентов: алкилароматических углеводородов и алканов изостроения. Получаемое топливо экологически чистое, ввиду отсутствия в нем соединений серы и азота. Также следует отметить, что в связи с ужесточающимися экологическими требованиями, предъявляемыми к автомобильному транспорту, алкановая фракция является наиболее ценной, ведь именно она обеспечивает в большей степени экологическую приемлемость топлива. Известен способ получения C8 или С10 углеводородов, преимущественно диметилалканов, путем контактирования алифатического спирта, в качестве которого используют изобутанол или изопентанол, с каталитической композицией, содержащей гидридную фазу железотитанатного интерметаллического соединения, модифицированного металлами IV-VII групп, и промышленный алюмоплатиновый или алюмоникелевый катализатор при массовом отношении промышленного катализатора к интерметаллическому соединению, равном 1:10, в среде инертного газа при температуре 300-420°С, давлении 30-80 атм и объемной скорости 0,1-0,8 ч-1 [5]. В описанном способе предусматривается использование каталитической композиции, содержащей в качестве гидридной фазы железотитанатного интерметаллида соединение общей формулы Ti1-xFe1-yMzHn, где М – один или несколько металлов IV-VII групп; лантаноиды или их смесь в виде мишметалла; х=0-0,3; y=0-0,7; z=0-0,7; n>0. Предпочтительно используют согласно изобретению [TiFe0,95Zr0,03Мо0,02]Н2 или [TiFe0,95Mn0,03Cr0,02]Н2, наряду с которым используют промышленные алюмоплатиновые типа АП-56, Ап-64 или алюмоникелевые катализаторы. Согласно описанному методу продуктами превращения соответствующих алифатических спиртов являются газообразная фракция, содержащая насыщенные углеводороды C1-C4, жидкая углеводородная фракция и вода. Жидкая углеводородная фракция содержит до 50% продуктов димеризации углеродного остова спирта, 10-15% кислородсодержащих соединений. К недостаткам изложенного метода следует отнести высокое газообразование (60-70%, среди которых образуется большое количество метана), а также низкую химическую и механическую устойчивость интерметаллического соединения, которое быстро становится хрупким и разрушается. Наиболее близким решением аналогичной задачи является способ получения алкановой фракции С4-С16, преимущественно изостроения, путем контактирования этанола с каталитической композицией, содержащей гидридную фазу железотитанатного интерметаллического соединения, модифицированного металлами IV-VII групп, и В описанном способе предусматривается использование каталитической композиции, содержащей в качестве гидридной фазы железотитанового интерметаллического соединения, модифицированного металлами IV-VII групп, общей формулы Ti1-xFe1-yMzHn, где М – один или несколько металлов IV-VII групп; лантаниды или их смесь в виде мишметалла; х=0-0,3; y=0-0,7; z=0-0,7; n>0. Предпочтительно используют согласно изобретению [TiFe0,95Zr0,03Мо0,02]Н2 или [TiFe0,95Mn0,03Cr0,02]H2 и промышленные катализаторы – алюмоплатиновые катализаторы типа АП-56, АП-64. К недостаткам изложенного способа следует отнести высокое газообразование (60-70%, среди которых образуется большое количество метана), невысокий выход продуктов реакции, а именно С4-С10 10-20%, а также низкую химическую и механическую устойчивость интерметаллического соединения, которое быстро становится хрупким. Задача настоящего изобретения заключается в разработке способа переработки продуктов ферментации биомассы в алкановую фракции С4-С10 в присутствии катализатора, обладающего высокой стабильностью, позволяющего снизить газообразование и увеличить выход насыщенных углеводородов. Поставленная задача решается тем, что предложен способ переработки продуктов ферментации растительной биомассы в алкановые углеводороды фракции С4-С10 путем реакции кросс-конденсации в присутствии Fe2O3-MgO/Al2O3 и Pt/Al2O3 катализатора при соотношении Fe:Mg:Pt=13:2:1, которую ведут при температуре 320-370°С, давлении аргона 1-5 МПа и удельной скорости подачи исходного сырья на катализатор, равной 0,4-0,8 дм3/ч·дм3кат. Реакция кросс-конденсации углеводородных остовов различных спиртов была обнаружена авторами и описана в работе [7] на примере этанола и циклопентанола, приводящая к образованию алкилзамещенных циклопентанов. Однако для переработки продуктов ферментации биомассы в алкановые углеводороды это реакция применяется впервые. Нижеследующие примеры иллюстрируют предлагаемое изобретение, но никоим образом не ограничивают его область. Пример 1-3. Синтез алкановой фракции осуществляют в проточном реакторе со стационарным слоем катализатора, в качестве которого используют предварительно восстановленный непосредственно в реакторе при 450°С в течение 10 часов Fe2O3-MgO/Al2O3 и Pt/Al2O3. Применяют фракцию 0,5-1,5 мм. Термообработку проводят при помощи тороидальной электропечи, которая расположена снаружи трубчатого реактора. Высота тороидальной печи соответствует высоте реактора. По завершении термообработки катализатора температуру реактора понижают до 300°С (пример 1), до 350°С (пример 2), до 400°С (пример 3), создают давление аргона 5 МПа и начинают подачу паров исходной смеси (этанол (80%) + пропанол (5%) + бутанол (5%) + изоамиловый спирт (10%)) на катализатор, количество которого в реакторе составляет 20 см3, со скоростью 0,6 дм3/ч·дм3кат. За это время в охлаждаемых приемниках (1-й по ходу имел температуру 0°С, 2-й -15°С) собирают жидкий продукт. Газ, образующийся в ходе реакции, после завершения процесса отбирается в газгольдер. Состав газообразных углеводородов С1-С4 определяют методом газовой хроматографии; состав жидких продуктов – методом хромато-масс-спектроскопии. В таблице 1 представлены результаты по превращению смеси спиртов, моделирующей продукты ферментации биомассы и содержащей 80% этанола, 5% пропанола, 5% бутанола и 10% изоамилового спирта, в зависимости от температуры.
Продукты превращения спиртов состоят из углеводородов, оксигенатов и воды. Из таблицы 1 видно, что при температуре ниже 350°С значительно увеличивается выход кислородсодержащих соединений, в то время как улучшения выхода целевой алкановой фракции не наблюдается. При более высокой температуре, как следует из примера 3, возрастает скорость реакций крекинга, что приводит к увеличению газообразных продуктов. Пример 4-6. Синтез алкановой фракции осуществляют в проточном реакторе со стационарным слоем катализатора, в качестве которого используют предварительно восстановленный непосредственно в реакторе при 450°С в течение 10 часов Fe2O3-MgO/Al2O3 и Pt/Al2O3. Применяют фракцию 0,5-1,5 мм. Термообработку проводят при помощи тороидальной электропечи, которая расположена снаружи трубчатого реактора. Высота тороидальной печи соответствует высоте реактора. По завершении термообработки катализатора температуру реактора понижают до 350°С, создают давление аргона 5 МПа и начинают подачу паров исходной смеси, состоящей из этанола (80%), пропанола (5%) + бутанола (5%) + изоамилового спирта (10%)), на катализатор, количество которого в реакторе составляет 20 см3, со скоростью 0,4 дм3/ч·дм3кат. (пример 1), 0,6 дм3/ч·дм3кат. (пример 2), 0,8 дм3/ч·дм3кат. (пример 3). За это время в охлаждаемых приемниках собирают жидкий продукт (температура 1-го по ходу приемника равна 0°С, 2-го -15°С). Газ, образующийся в ходе реакции, после завершения процесса отбирается в газгольдер. Состав газообразных углеводородов С1-С4 определяют методом газовой хроматографии; состав жидких продуктов – методом хромато-масс-спектроскопии. В таблице 2 представлены результаты по превращению смеси спиртов, моделирующей продукты ферментации биомассы и содержащей 80% этанола, 5% пропанола, 5% бутанола и 10% изоамилового спирта в зависимости от времени контакта.
Продукты превращения спиртов состоят из углеводородов, оксигенатов и воды. Из представленных в таблице 2 данных следует, что максимальный выход углеводородов наблюдается при скорости подачи сырья 0,6 дм3/ч·дм3кат. При уменьшении скорости подачи сырья наблюдается резкое увеличение выхода газообразных продуктов. Кроме того, незначительно уменьшается выход жидких алканов, а в продуктах реакции обнаруживаются ароматические углеводороды. При увеличении скорости подачи сырья до 0,8 дм3/ч·дм3кат, наблюдается падение конверсии и резко возрастает выход оксигенатов. Пример 7-9. Синтез алкановой фракции осуществляют в проточном реакторе со стационарным слоем катализатора, в качестве которого используют предварительно восстановленный непосредственно в реакторе при 450°С в течение 10 часов [Fe2O3-Pt]/Al2O3. Применяют фракцию 0,5-1,5 мм. Термообработку проводят при помощи тороидальной электропечи, которая расположена снаружи трубчатого реактора. Высота тороидальной печи соответствует высоте реактора. По завершении термообработки катализатора температуру реактора понижают до 300°С (пример 7), до 350°С (пример 8), до 400°С (пример 9), создают давление аргона 5 МПа и начинают подачу паров исходной смеси (этанол (80%) + пропанол (5%) + бутанол (5%) + изоамиловый спирт (10%)), на катализатор, количество которого в реакторе составляет 20 см3, со скоростью 0,6 дм3/ч·дм3кат. За это время в охлаждаемых приемниках (1-й по ходу имел температуру 0°С, 2-ой -15°С) собирают жидкий продукт. Газ, образующийся в ходе реакции, после завершения процесса отбирается в газгольдер. Состав газообразных углеводородов C1-C4 определяют методом газовой хроматографии; состав жидких продуктов – методом хромато-масс-спектроскопии. В таблице 3 представлены результаты по превращению смеси спиртов, моделирующей продукты ферментации биомассы и содержащей 80% этанола, 5% пропанола, 5% бутанола и 10% изоамилового спирта, в зависимости от температуры.
Продукты превращения смеси спиртов состоят из углеводородов, оксигенатов и воды. Из примеров 7-9 следует, что данный катализатор, представляющий собой железо-платиновую композицию, нанесенную на Таким образом, предлагаемое изобретение позволяет снизить газообразование на 30% и повысить выход фракции углеводородов С4-С10 более чем на 10% при времени работы катализатора 35 часов по сравнению с прототипом (5-10 часов). Источники информации
4. Бурхан Осман. «Синтез кислородсодержащих добавок, улучшающих экономические и эксплуатационные свойства моторных топлив», РГУ Нефти и газа им. И.М.Губкина, Дисс. на соискание ученой степени к.х.н., Москва 2001.
6. М.В.Цодиков, В.Я.Кугель, Ф.А.Яндиева, Г.А.Клигер, Л.С.Глебов, А.И.Микая, В.Г.Заикин, Е.В.Сливинский, Н.А.Платэ, А.Е.Гехман, И.И.Моисеев. “Восстановительная дегидратация спиртов: путь к алканам”, 2004, Кинетика и катализ, том 45, 7. «Химические реактивы и процессы малотоннажной химии» / Вып.3, Тула, изд-во Тул. гос. пед. Ун-та им. Л.Н.Толстого, 2000.
Формула изобретения
Способ переработки продуктов ферментации растительной биомассы в алкановые углеводороды фракции С4-С10 путем реакции кросс-конденсации в присутствии Fe2O3-MgO/Al2O3 и Pt/Al2O3 катализатора при соотношении Fe:Mg:Pt=13:2:1, которую ведут при температуре 320-370°С, давлении аргона 1-5 МПа и удельной скорости подачи исходного сырья на катализатор, равной 0,4-0,8 дм3/ч·дм3 кат.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||