Патент на изобретение №2383970

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2383970 (13) C1
(51) МПК

H01M4/02 (2006.01)
H01M10/052 (2010.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 28.09.2010 – действует

(21), (22) Заявка: 2009110117/09, 23.03.2009

(24) Дата начала отсчета срока действия патента:

23.03.2009

(46) Опубликовано: 10.03.2010

(56) Список документов, цитированных в отчете о
поиске:
RU 2168802 С1, 10.06.2001. RU 2230399 С2, 10.06.2004. WO 03083968 А1, 09.10.2003. JP 2008117543 А, 22.05.2008.

Адрес для переписки:

111250, Москва, ул. Красноказарменная, 14, ГОУВПО “МЭИ (ТУ)”, НИЧ, патентный отдел, Т.А.Лобзовой

(72) Автор(ы):

Смирнов Сергей Евгеньевич (RU),
Смирнов Сергей Сергеевич (RU),
Пуцылов Иван Александрович (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Московский энергетический институт (технический университет)” (ГОУВПО “МЭИ (ТУ)”) (RU)

(54) КАТОД ЛИТИЕВОГО ИСТОЧНИКА ТОКА

(57) Реферат:

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых источников тока. Согласно изобретению в катоде литиевого источника тока, представляющем собой композицию активной массы, электропроводной добавки и связующего, в качестве связующего используют твердополимерный электролит (ТПЭ), состоящий из полимерной матрицы и неорганической ионогенной соли лития. Техническим результатом изобретения является повышение емкости и снижение саморазряда катодов литиевых источников тока. 1 з.п. ф-лы, 1 табл.

Изобретение относится к электротехнической промышленности и может быть использовано при производстве литиевых источников тока. Катоды литиевых источников тока являются композиционными материалами: они представляют собой смесь активной массы, электропроводной добавки и связующего. Эти катоды являются пористыми материалами, а их поры при работе литиевых источников тока заполняют раствором жидкого электролита. В качестве активной массы катода в настоящее время широко применяются оксиды металлов [1].

Известен катод, используемый в литиевых источниках тока, который представляет собой композицию из диоксида марганца, сажи и фторопласта, взятых в следующем массовом соотношении – 85:10:5. Для этих композиций удельная электрическая емкость лежит в интервале 150-220 мА·ч/г при 20°С, что значительно ниже его теоретического значения [2]. В качестве связующего вещества в этом катоде используют непроводящий фторопласт, который частично экранирует поверхность активных частиц, делая их недоступными для процесса интеркаляции иона лития, тем самым снижая удельную емкость катода.

Наиболее близким по технической сущности и достигаемым результатам является катод, используемый в литиевых источниках тока, который представляет собой композицию из диоксида марганца, сажи и полипиролла, взятых в следующем массовом соотношении – 85:10:5. Использование в качестве связующего проводящего полимера-полипиролла позволило увеличить емкость до 280 мА·ч/г при 20°С. К недостаткам этого катода следует отнести высокий саморазряд (20% в месяц) из-за деструкции полипиролла, а также коррозионных процессов из-за наличия в порах катода жидкого электролита [3].

Техническая задача, решаемая изобретением, состоит в повышении емкости и снижении саморазряда катодов литиевых источников тока. Поставленная техническая задача достигается тем, что в известном катоде литиевого источника тока, представляющем собой композицию активной массы, электропроводной добавки и связующего, предлагается в качестве связующего использовать твердополимерный электролит (ТПЭ), состоящий из полимерной матрицы и неорганической ионогенной соли лития.

Кроме того, в качестве полимерной матрицы может быть использован полиарилсульфон средней молекулярной массы (0,2-1,0)·105 при следующем массовом соотношении компонентов, мас.ч:

полиарилсульфон – 100, неорганическая соль лития – не более 30.

При таких значениях средней молекулярной массы полимер обладает хорошими пленкообразующими свойствами, что позволяет получить твердополимерный электролит с хорошими механическими свойствами.

Обоснование выбранных интервалов компонентов: уменьшение количества соли менее нижнего предела приводит к неравномерности распределения ее по полимеру и соответственно к ухудшению проводящих свойств;

увеличение количества соли лития более верхнего предела приводит к разрушению структуры полимера и, как следствие, твердополимерный электролит становится гомогенно неоднородным, что также приводит к снижению проводящих свойств.

Катод изготавливают следующим образом. Порошок диоксида марганца MnO2 перемешивают с сажей в соотношении 85:10 и пропитывают 5 (мас.) % раствором твердополимерного электролита в диметилацетамиде. Твердополимерный электролит состоит из перхлората лития и полиарилсульфона при массовом соотношении компонентов: полиарилсульфон – 100, перхлорат лития – 20. Объем раствора выбирают таким образом, чтобы соотношение MnO2:сажа:ТПЭ составляло 85:10:5. Затем полученную смесь высушивают в сушильном шкафу при температуре 100°С в течение часа в вакууме и напрессовывают на контактную часть токоотвода катода. Прессование осуществляют под давлением 10 МПа.

Процесс сушки готового катода проводят в сушильном шкафу при температуре 100°С в течение двух часов в вакууме.

В таблице приведены примеры конкретных составов и свойств заявленных катодов.

Диоксид марганца, мг LiClO4, мг Полимерная матрица, мг Графит, мг Удельная емкость, мА·ч/г Саморазряд, %/год
1 9,00 0,05 0,45 0,50 287 0,5
2 9,00 0,10 0,40 0,50 294 0,5
3 9,00 0,15 0,35 0,50 285 0,5
4 8,50 0,10 0,90 0,50 304 0,5
5 8,50 0,20 0,80 0,50 310 0,5
6 8,50 0,30 0,70 0,50 298 0,5
7 8,00 0,15 1,35 0,50 288 0,5
8 8,00 0,30 1,20 0,50 293 0,5
9 8,00 0,45 1,05 0,50 290 0,5

Предлагаемый катод имеет преимущество по емкости и саморазряду перед существующими аналогами.

Указанный эффект объясняется тем, что в качестве связующего катода и электролита в его порах используется твердополимерный электролит. Таким образом в данном катоде полностью отсутствует жидкая фаза, т.е он является твердофазным композиционным материалом. При использовании электропроводного ТПЭ в качестве связующего компонента экранирования поверхности частиц активного материала не возникает. Кроме того, равномерность распределения ТПЭ в структуре твердофазного электрода по данным растровой электронной микроскопии выше, чем у электродов-прототипов. Как показали эксперименты, по длительным режимам разряда твердофазных катодов и их разряда после хранения ТПЭ в отличие от жидкого электролита является полностью инертным по отношению к материалам положительного электрода. Вследствие чего саморазряд твердофазного катода значительно меньше, чем катода, поры которого заполнены жидким электролитом.

Источники информации

1. Химические источники тока: Справ. / Под ред. Н.В.Коровина и A.M.Скундина. М.: Изд-во МЭИ, 2003. 799 с.

2. Lithium Batteries: Science and Technology / Nazri G.A., Pistoia G., eds. Boston. Kluwer Academic, 2004. 375 р.

Формула изобретения

1. Катод литиевого источника тока, представляющий собой композицию активной массы, электропроводной добавки и связующего, отличающийся тем, что в качестве связующего используют твердополимерный электролит, состоящий из полимерной матрицы и неорганической ионогенной соли лития.

2. Катод литиевого источника тока по п.1, отличающийся тем, что в качестве полимерной матрицы используют полиарилсульфон средней молекулярной массы (0,2-1,0)·105 при следующем массовом соотношении компонентов, мас.ч.:
полиарилсульфон 100, неорганическая соль лития не более 30.

Categories: BD_2383000-2383999