Патент на изобретение №2382736

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2382736 (13) C1
(51) МПК

C01G39/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.10.2010 – действует

(21), (22) Заявка: 2008146470/15, 18.11.2008

(24) Дата начала отсчета срока действия патента:

18.11.2008

(46) Опубликовано: 27.02.2010

(56) Список документов, цитированных в отчете о
поиске:
ЗЕЛИКМАН А.Н., Металлургия тугоплавких редких металлов. – М.: Металлургия, 1986, с.110-114. RU 2312067 С2, 20.01.2007. SU 300066 A1, 15.05.1972. US 4551313 A, 05.11.1985. CN 101254949 A, 03.09.2008. JP 1208330 A, 22.08.1989.

Адрес для переписки:

603950, г.Нижний Новгород, ГСП-75, ул. Тропинина, 49, Директору ИХВВ РАН М.Ф. Чурбанову

(72) Автор(ы):

Моисеев Александр Николаевич (RU),
Чилясов Алексей Викторович (RU),
Дорофеев Виталий Витальевич (RU),
Краев Игорь Александрович (RU),
Пименов Владимир Георгиевич (RU),
Евдокимов Илья Игоревич (RU)

(73) Патентообладатель(и):

Учреждение Российской Академии Наук Институт химии высокочистых веществ РАН (ИХВВ РАН) (RU)

(54) СПОСОБ ОЧИСТКИ ТРИОКСИДА МОЛИБДЕНА

(57) Реферат:

Изобретение может быть использовано для получения триоксида молибдена высокой степени чистоты, используемого при синтезе теллуритных стекол, являющихся перспективными для изготовления активных и пассивных элементов волоконной и интегральной ИК-оптики. Для очистки исходный триоксид молибдена прокаливают в вакууме при 550-580°С. Прокаленный продукт очищают испарением в режиме сублимации в вакууме при температуре 690-780°С. Очищенный продукт осаждают на подложке, температура которой составляет 500-550°С. Изобретение позволяет повысить чистоту триоксида молибдена по примесям металлов до уровня менее 10-5 мас.% и получить триоксид молибдена с выходом 80-85%. 2 з.п. ф-лы, 2 табл.

Заявляемое изобретение относится к технологии неорганических материалов, в частности оксидов металлов, и касается разработки способа получения высокочистого триоксида молибдена, используемого при синтезе теллуритных стекол, являющихся перспективными для изготовления активных и пассивных элементов волоконной и интегральной ИК-оптики.

Имеющийся на отечественном рынке триоксид молибдена марки «ЧДА», выпускаемый по ТУ 6-09-4471-77, не удовлетворяет требованиям волоконной оптики. Триоксид молибдена более высокой чистоты у нас в стране не производится.

Известны химические способы очистки триоксида молибдена, которые заключаются в связывании примесей специально подобранными реагентами в такие химические соединения, которые сравнительно легко отделяются от основного вещества (см., например, патент США 4762695).

В упомянутом источнике описан способ получения высокочистого триоксида молибдена переводом молибденсодержащего сырья в кислый водный раствор с перекисью водорода, очисткой этого раствора на ионообменных смолах с последующим его упариванием.

Содержание примесей радиоактивных элементов в полученном оксиде молибдена ниже 0,5 ppb, примесей Fe, Ni, Cr ниже 0,1 ppm.

Известный способ является многостадийным, требует большого количества высокочистых реактивов, в том числе тщательной отмывки ионообменной смолы.

Известен способ получения чистого триоксида молибдена возгонкой его из молибденовых концентратов. В качестве исходного концентрата используются огарки с содержанием молибдена от 48 до 56%, процесс испарения ведется при 900-1100°C в атмосфере воздуха. Возогнанный триоксид молибдена имеет чистоту 99,975%, что на 2-3 порядка выше исходного, в том числе по примесям меди и железа. Обеспечивая получение триоксида молибдена с высокой производительностью без затрат дополнительных химических реагентов по короткой технологической схеме, известный способ имеет недостаточную степень очистки триоксида молибдена, связанную с использованием в качестве исходного сырья огарка, высоких температур испарения и воздуха в качестве атмосферы (см. в книге Зеликман А.Н. Металлургия редких металлов, М., Металлургия, 1978, с.359). Упомянутый способ взят в качестве прототипа.

Задачей, на решение которой направлено заявляемое изобретение, является разработка способа получения высокочистого триоксида молибдена, пригодного для использования в качестве исходного материала при изготовлении теллуритных стекол для волоконной оптики.

Эта задача решается за счет того, что в способе очистки триоксида молибдена испарением согласно заявляемому изобретению триоксид молибдена помещают в тигель, выполненный из инертного по отношению к триоксиду молибдена материалу, и прокаливают при 550 – 580°C, очистку прокаленного продукта ведут испарением в режиме сублимации в вакууме при температуре 690-780°C, очищенный продукт осаждают на подложке, температура которой 500-550°C.

Предпочтительно сублимацию прокаленного продукта вести в безмасляном вакууме при 730-750°C. В безмасляном вакууме триоксид молибдена более эффективно освобождается от летучих, в том числе углеродсодержащих, примесей, а проведение сублимации при указанной температуре предпочтительно, поскольку скорость испарения уже достаточно высокая для обеспечения высокой производительности, а коэффициенты разделения основа – примеси еще не ухудшаются из-за большой скорости испарения (см.табл.1).

Предпочтительно температуру подложки для осаждения триоксида молибдена поддерживать 510-530°C, что позволяет повысить коэффициент извлечения продукта из пара и использовать дополнительную ступень очистки от более летучих примесей.

Триоксид молибдена, полученный по предлагаемому способу, по данным спектрального анализа, содержит примеси металлов -5 мас.%, что позволяет использовать его в качестве исходного материала при синтезе теллуритных стекол. Выход по триоксиду молибдена составляет 80-85%.·10

Новыми отличительными признаками заявляемого способа является то, что очистке подвергают триоксид молибдена, предварительно прокаленный при 550-580°С в вакууме, очистку ведут испарением в режиме сублимации в вакууме при температуре 690-780°C, а очищенный триоксид молибдена выделяют на подложке, имеющей температуру 500-550°C. Для получения высокочистого продукта исходный триоксид молибдена прокаливают в тигле, выполненном из инертного по отношению к триоксиду молибдена материалу (платина, золото, и др.), а очищенный продукт осаждают на подложке из чистого кварцевого стекла или другого инертного материала.

Опытным путем было установлено, что прокаливание триоксида молибдена при 550-580°C обеспечивает очистку диоксида теллура от летучих примесей. При температуре менее 550°C реализуется низкая степень очистки от более летучих селена, мышьяка, ванадия и углеродсодержащих примесей, а при температуре выше 580°C возрастают потери продукта вследствие его возгонки.

Опытным путем было установлено, что проведение сублимации в вакууме при температуре 690-780°C обеспечивает высокую эффективность очистки. Наличие вакуума позволяет получить высокую скорость испарения и производительность процесса. При температуре ниже 690°C скорость испарения недостаточна для практических целей, а при повышении температуры выше 780°С снижаются коэффициенты разделения примесь – основа в 2-3 и более раза.

Опытным путем было установлено, что при температуре подложки менее 500°С происходит конденсация нестехиометричного окисла молибдена, обедненного кислородом (например, Mo8O23, Mo4O11), имеющего более темный цвет, что непригодно для его использования, а при температуре подложки более 550°С понижается выход продукта на 10 и более процентов.

Таким образом упомянутые отличительные признаки являются существенными, так как каждый из них необходим, а вместе они достаточны для решения поставленной задачи – получение высокочистого триоксида молибдена, пригодного для синтеза теллуритных стекол.

Пример

В платиновый тигель помещают навеску 60 г исходного триоксида молибдена квалификации «ЧДА» и прокаливают в безмасляном вакууме ~10-3 мм рт.ст. при 560°C для удаления легколетучих примесей – оксидов селена и мышьяка, серы, углеродсодержащих примесей, сорбированной и химически связанной воды. Температуру кварцевой подложки (конденсатора) при этом поддерживают ~600°С. После прокаливания температуру тигля повышают до 750°C и начинают процесс сублимации, температуру конденсатора понижают до 520°C. Когда в тигле остается ~10% от первоначальной загрузки, процесс прекращают. Кварцевый реактор охлаждают, напускают в него очищенный кислород и конденсатор с осадком сублимированного MoO3 извлекают. Вес осадка 49,2 г, что составляет 82% от загрузки. Цвет сублимата – легко зеленоватого оттенка (цвет стехиометричного -MoO3). Рентгенофазовый анализ сублимата также не выявил наличия фаз, кроме -MoO3.

Результаты спектрального анализа очищенного триоксида молибдена представлены в табл.2. Из табл.2 видно, что содержание таких примесей, как K, Mg, Fe, Cu, снижено более чем на 2-3 порядка, a Na – более чем на 5 порядков. Содержание примесей переходных металлов (Mn, Fe, Cu, Cr, Ni, Co, V), лимитирующих оптические потери в теллуритных стеклах в диапазоне 1-4 мкм, в MoO3 находится на уровне <1·10-5 мас.%.

Таблица 1
Значения идеального и экспериментального коэффициента разделения тв(ж)-пар для систем на основе оксидов элементов (t=750°C)
оксиды p, атм (T=1023 K) оснприм эксп 750°С
-MoO3 0,22·10-2 1
-Mn2O3 <107 >2·104 >7
FeO -Fe2O3 <10-6 >2·103 >150
СO3О4 <10-6 >2·103
CuO 7,89·10-5 p(Cu)<10-7 >2·104 >1000
NiO <10-7 >2·104
Cr2O3 <10-7 >2·104
V2O5 2.17 1000 (1/)
K2O <10-5 >2·102
Na2O 6,89·10-7 >3·103 >25000
PbO 1,50·10-5 147
As2O5 0,33 150 (1/)
Sb2O3 1,6·10-4 13,75
Bi2O3 4,09·10-7 >5·103
SeO2 8·10-3 3,6 (1/)
TeO2 3,64·10-4 6,04

Формула изобретения

1. Способ очистки триоксида молибдена испарением, отличающийся тем, что перед очисткой триоксид молибдена прокаливают в вакууме при 550-580°С, очистку прокаленного продукта ведут испарением в режиме сублимации в вакууме при температуре 690-780°С, а очищенный продукт осаждают на подложке, температура которой составляет 500-550°С.

2. Способ по п.1, отличающийся тем, что очистку прокаленного продукта ведут в безмасляном вакууме при 730-750°С.

3. Способ по п.1, отличающийся тем, что очищенный продукт осаждают на подложке, температура которой составляет 510-530°С.

Categories: BD_2382000-2382999