Патент на изобретение №2167071
|
||||||||||||||||||||||||||
(54) УСТРОЙСТВО ПРЕОБРАЗОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
(57) Реферат: Изобретение относится к технике электроснабжения железнодорожного транспорта и предназначено для использования в силовых цепях постоянно-переменного тока тягового преобразования. Устройство содержит токоприемник, дроссель, преобразователь с блоками преобразования по фазам А,В,С, сетевые конденсаторы “+” и “-” полюсов, блок управления преобразователем, интеллектуальный датчик параметров преобразователя, интеллектуальный датчик мгновенного положения ротора электродвигателя с балластным сопротивлением, блок сравнения параметров преобразователя и электродвигателя, блок пороговых устройств, два блока коммутации компенсационных конденсаторов и разрядных сопротивлений, две батареи компенсационных конденсаторов и две батареи разрядных сопротивлений. Устройство обеспечивает оперативную защиту от самовозбуждения и самораскачивания асинхронного двигателя в начальной стадии и снижает в несколько раз изменения напряжения, тока и частоты в цепи статора. Это позволяет снизить требования к изоляции цепей, улучшает условия управления двигателем и увеличивает эксплуатационный ресурс аппаратуры. 2 ил. Настоящее изобретение относится к преобразовательной технике, направлено на улучшение качества преобразования электрической энергии и предназначено для повышения надежности преобразования постоянного тока в переменный и наоборот. Более конкретно данное изобретение относится к повышению надежности работы силовых цепей устройств преобразования электрической энергии, например силовых цепей постоянно-переменного тока тягового преобразователя транспортных электроустановок высокоскоростных поездов, электричек, трамваев, поездов метрополитена и т.п. Для исключения самовозбуждения асинхронных электродвигателей и ликвидации периодических колебаний частоты вращения ротора машины, получившего название самораскачивания. Известен способ гашения самовозбуждения асинхронных двигателей, которое происходит при следующих условиях: В цепи статора включается емкость определенной величины: Активное сопротивление в контуре электрическая машина – емкость не превышает некоторого критического значения: Ротор машины вращается с частотой, находящейся в определенных пределах. При соблюдении этих условий будет осуществляется передача мощности от ротора к статору, необходимая для возникновения и развития самовозбуждения. Самовозбуждение может возникнуть под действием простого и динамического моментов явнополюсности и гасится подбором емкости в цепи статора. [Венников В. А. и др. Самовозбуждение и самораскачивание в электрических системах. М.: Высшая школа, 1964 г.]. Самовозбуждение асинхронного двигателя может произойти в процессе пуска и при установившемся скольжении. При самовозбуждении асинхронного двигателя в системе кроме токов основной частоты возникают токи меньшей частоты, зависящей от параметров системы, т.е. асинхронный двигатель на частоте самовозбуждения работает асинхронным генератором. Вследствие наличия двух токов разной частоты результирующий ток и напряжение имеют вид биений. В режиме самовозбуждения на частоте свободных колебаний асинхронный двигатель развивает генераторный (тормозной) момент, а на основной частоте – двигательный. При увеличении тормозного момента выше двигательного частота вращения асихронного двигателя уменьшается, а затем при исчезновении самовозбуждения, начиная с некоторой величины, вновь увеличивается. Такой режим, выражающийся в периодическом колебании частоты вращения ротора машины, получил название самораскачивания. На фиг. 1 приведена осциллограмма процессов при асинхронном самовозбуждении и самораскачивании, из которого видно, что огибающие тока, напряжения и мощности могут изменятся периодически в несколько раз по амплитуде, так же как напряжение, ток и частота вращения электродвигателя, причем амплитуды колебаний напряжений и токов значительно превышают номинальные значения. В реальном устройстве рост напряжений и токов в высоковольтных цепях статического преобразователя и асинхронного двигателя вызывает насыщение машины, рост напряжений может быть ограничен и нелинейностью другого вида – пробоем изоляции. Самовозбуждение и самораскачивание в системе с высоковольтным статическим преобразователем, приводящие к большим токам и моментам, вызывает срабатывание электрической защиты и делает невозможным нормальный режим работы устройства в целом, что недопустимо на транспорте в движении и, в частности, на высокоскоростных магистралях. Одним из методов устранения самовозбуждения – увеличение активного сопротивления выше величины критической: ![]() где xal = xa + xl.x’al = x’a + x1 – элементы структурной схемы асинхронного двигателя с активным, индуктивным и емкостным сопротивлением. Условие отсутствия самовозбуждения при данном xc запишется как r > rкр. [Б.Д. Гандин и др. Пуск асинхронных электродвигателей, Л., Судостроение, 1930 г., аналог]. Однако увеличение r и x1 ведет к значительным потерям мощности, тепловым перегревам и непредсказуемому изменению длительности и характера переходных процессов, что делает эти процессы неуправляемыми. Увеличение емкости может снять самовозбуждение, но известные устройства не обеспечивают оперативное и точное изменение емкости в процессе эксплуатации электроподвижного состава, а для систем с высоковольтными статическими преобразователями такие устройства отсутствуют. Известно устройство, которое может быть использовано для автоматического регулирования реактивной мощности. Известное устройство может использоваться на электроподвижном составе с однофазной сетью переменного тока для повышения коэффициента мощности. Устройство для автоматического регулирования реактивной мощности содержит нагрузку, источник реактивной мощности, датчик режима сети, блок синхронизирующих импульсов, блок импульсно-фазового управления, два устройства выборки-хранения, перемножитель напряжения, интегратор, устройство вычисления максимальной величины мощности, делитель частоты и устройство экстремального регулирования. Источник реактивной мощности состоит из последовательно соединенных индуктивности, емкости и двух встречно-параллельно включенных тиристоров. Датчик режима сети включает в себя трансформатор напряжения и трансформатор тока. Нагрузка подключена к сети через трансформатор тока и параллельно цепи из последовательно включенных индуктивности, емкости и встречно-параллельно включенных тиристоров. Трансформатор напряжения подключен параллельно сети, а его выход соединен с входом первого устройства выборки-хранения и входом блока синхронизирующих импульсов. Выход трансформатора тока соединен со входом второго устройства выборки- хранения, выходы устройств выборки-хранения подключены ко входам перемножителя напряжения, выход которого через интегратор соединен с первым входом устройства вычисления максимальной величины мощности. Выход блока синхронизирующих импульсов через делитель частоты связан со вторыми входами интегратора и устройства вычисления максимальной величины мощности, выход которого через устройство экстремального регулирования соединен со входом блока импульсно-фазового управления. Выход блока импульсно-фазового управления подключен к тиристорам компенсатора реактивной мощности. Применение устройства повышает коэффициент мощности за счет компенсации индуктивного тока нагрузки емкостной составляющей тока компенсатора реактивной мощности. [Устройство для автоматического регулирования реактивной мощности: Пат. 3145141 Россия, МПК7 H 02 J 3/18, G 05 F 1/70, Кулинич Ю.М. и др. Дальневосточный гос. Университет путей сообщения, N 99101157/09, Заяв. 25.11.99, Опуб. 27.01.00, Бюл. N 3, аналог]. Недостатком этого устройства является конструктивная сложность в случае применения для 3-фазных двигателей, технологическая невозможность реализации для системы: постоянный ток – конденсаторный делитель напряжения – статический преобразователь (пост. ток – 3-фазный ток) – асинхронный двигатель с целью устранения самовозбуждения и самораскачивания во взаимосвязанной системе 2 статических преобразователей, 4 асинхронных двигателей, т.к. самовозбуждение может возникнуть в любом из 4 асинхронных двигателей. Параметры каждого двигателя, статического преобразователя, конденсаторных батарей отличаются и в каждом случае нужны дополнительные индивидуальные датчики, блоки и связи для точного, экономичного и оперативного устранения самовозбуждения в конкретной цепи. Наиболее близким является устройство преобразования электрической энергии, содержащее 3-уровневый регулятор с широтно-импульсной модуляцией, которое обеспечивает непрерывное и плавное регулирование выходного напряжения от 0 до максимального значения. Преобразователь электрической энергии включает устройство формирования многоимпульсной последовательности для работы в режимах двухполярной модуляции, однополярной модуляции и перемодуляции, устройство для формирования одиночных импульсов и устройство управления, обеспечивающие переключение этих режимов модуляции по фазам A, B, C. Кроме того, устройство содержит токоприемник, который соприкасается с контактным проводом “+”, дроссель, сетевые конденсаторы “+” и “-“, асинхронный двигатель, колеса, являющиеся контактным проводом “-” [Устройство преобразования электрической энергии. Пат. N 5587891 США, H 02 M 7/5387, 24.12.96 г., Опубл., прототип]. Недостатком этого устройства является неспособность функционально обеспечить устранение режима самовозбуждения и самораскачивания, что приводит в условиях повышенных напряжений к пробоям изоляции, обратным перенапряжениям на тиристорах, нарушающее их работу и вызывающее выход из строя управляющих элементов и всей схемы. Кроме того, к недостаткам устройства можно отнести малую информированность по скорости изменения напряжения, тока, оборотов двигателя и другим изменениям. Задачей настоящего изобретения является снижения уровня самовозбуждения и самораскачивания в начальной стадии и их гашение с блокировкой от повторных моментов, повышение качества электроснабжения асинхронных электродвигателей, надежности эксплуатации управляющих блоков, увеличение ресурса эксплуатации изоляции, обеспечение пожаробезопасности эксплуатации всего устройства и обслуживающего персонала, улучшения системы охлаждения инвертора напряжения, обеспечение работы в зоне отсутствия самовозбуждения. Эти задачи решаются для широкой номенклатуры объектов (высокоскоростные поезда, электрички, трамваи, поезда метро и т.п.). Снижение уровня самовозбуждения и самораскачивания начальной стадии и их гашение с блокировкой от повторного явления, повышение качества энергоснабжения асинхронных электродвигателей, надежность эксплуатации управляющих блоков устройства, увеличение ресурса эксплуатации изоляции, обеспечение пожаробезопасности эксплуатации всего устройства и обслуживающего персонала обусловлены установкой дополнительного интеллектуального датчика параметров преобразователя между преобразователем и асинхронным двигателем, интеллектуального датчика параметров вращения вала двигателя с балластным сопротивлением на валу двигателя, причем датчики обеспечивают информацию и о величине сигналов и их первых производных, блока сравнения параметров преобразователя и двигателя, блока пороговых устройств, блока коммутации конденсаторов и разрядных сопротивлений, батарей компенсационных конденсаторов и батарей разрядных сопротивлений на “+” и “-” полюсах. Одновременно информация интеллектуальных датчиков вводится в компьютер устройства в блоке управления. Это позволяет гасить возникающий процесс самовозбуждения еще в начальной стадии, не доводя до самораскачивания вала двигателя, и блокировать устройство от повторного явления, а в случае возникновения самораскачивания включать сигнал компенсации в усиленном режиме с постепенным снижением до нормы. В этом варианте искажение питающего напряжения будет минимальным и Cos ![]() ![]() периодические изменения напряжения, тока и частоты в цепи статора в несколько раз, что позволяет снизить требования к изоляции цепей; самораскачивания, что улучшает условия управления асинхронными двигателями; увеличивает эксплуатационный ресурс аппаратуры и кабелей устройства; обеспечивает блокировку от повторных явлений до заводской регулировки; повышает качество электропитания асинхронных электродвигателей; обеспечивает пожаробезопасность эксплуатации всего устройства и обслуживающего персонала; снижает потери электроэнергии за счет дополнительных потерь на нагрев; упрощает и улучшает условия работы системы охлаждения. Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||