Патент на изобретение №2166671

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2166671 (13) C1
(51) МПК 7
F04D17/04
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – прекратил действие

(21), (22) Заявка: 99127392/06, 21.12.1999

(24) Дата начала отсчета срока действия патента:

21.12.1999

(43) Дата публикации заявки: 10.05.2001

(45) Опубликовано: 10.05.2001

(56) Список документов, цитированных в отчете о
поиске:
SU 1112151 A, 07.09.1984. RU 2059114 C1, 27.04.1996. DE 3531555 C1, 12.02.1987. FR 2570445 A1, 21.03.1986.

Адрес для переписки:

610017, г.Киров, Октябрьский пр-т 133, ВГСХА, патентный отдел

(71) Заявитель(и):

Вятская государственная сельскохозяйственная академия

(72) Автор(ы):

Сычугов Н.П.,
Саитов В.Е.,
Жолобов Н.В.,
Гатауллин Р.Г.

(73) Патентообладатель(и):

Вятская государственная сельскохозяйственная академия

(54) ПРОТИВОТОЧНЫЙ ДИАМЕТРАЛЬНЫЙ ВЕНТИЛЯТОР


(57) Реферат:

Изобретение относится к вентиляторостроению и может применяться в сельскохозяйственном и промышленном производстве. Новым в изобретении является то, что в диаметральном вентиляторе, содержащем корпус (К) с входным (В1) и выходным (В2) патрубками и разделяющей их плоской стенкой (ПС), снабженной жалюзийной решеткой (Ж), и установленное в (К) рабочее колесо (РК), на входной кромке (К) вентилятора, выше входного отверстия, закреплена прямолинейная стенка, параллельная разделяющей ПС, образующая входной канал, при этом сопряжение ПС с входной кромкой К вентилятора выполнено, например, по логарифмической спирали. Изобретение обеспечивает получение технического результата, заключающегося в возможности всасывания воздушного потока по отношению к нагнетаемому потоку под углом 360° встречно. 2 ил.


Изобретение относится к области вентиляторостроения и может применяться в промышленном и сельскохозяйственном производстве.

Известен диаметральный вентилятор, содержащий спиральный корпус с входным и выходным патрубками и разделяющей их плоской разделительной стенкой, снабженной со стороны рабочего колеса решеткой, жалюзи которой направлены к рабочему колесу [1].

В данном вентиляторе центр вращения вихря, расположенный в области радиального зазора, образованного рабочим колесом и плоской стенкой, стабилизируется жалюзийной решеткой. При этом стабилизация центра вращения вихря способствует снижению уровня шума и расширению диапазона устойчивой работы диаметрального вентилятора.

Однако такой вентилятор не имеет входной коробки, позволяющей забирать воздушный поток под требуемым углом по отношению к нагнетаемому воздушному потоку, в частности под углом 360o (всасывание и нагнетание происходит в одной плоскости, но в противоположном направлении). Это затрудняет применение вентилятора, например, в конкретных воздушных системах зерно- и семяочистительных машин.

Известен прямоточный диаметральный вентилятор, содержащий корпус с входным (всасывающим) и выходным патрубками, установленные в корпусе два лопаточных рабочих колеса и расположенный между ними перепускной канал, образованный внутренними обводами патрубков. Кроме того, эти обводы выполнены плоскими и расположены параллельно один к другому [2].

Недостатком данного вентилятора является то, что забор воздуха по отношению к нагнетаемому воздушному потоку осуществляется по S-образной схеме, что увеличивает длину воздушного тракта, и, следовательно, потери на трение воздушного потока о стенки каналов. Кроме того, поскольку вентилятор снабжен двумя рабочими колесами, то увеличивается металлоемкость и затраты мощности на генерирование воздушного потока. К тому же вентилятор имеет увеличенные габариты.

Цель изобретения – всасывание диаметральным вентилятором воздушного потока по отношению к нагнетаемому потоку под углом 360o встречно (противоточно).

Указанная цель достигается тем, что на входной кромке корпуса вентилятора, выше входного окна, закреплена прямолинейная стенка, параллельная плоской стенке, разделяющей входное окно и выходное, прямолинейная стенка с входной кромкой корпуса вентилятора соединена криволинейной плоскостью, выполненной, например, по логарифмической спирали.

В результате анализа литературных источников не обнаружено идентичного выполнения предлагаемой разработки. При этом отличительные от прототипа признаки придают заявляемой совокупности новые свойства, проявляющиеся в положительном эффекте.

Прямолинейная и криволинейная плоскости, размещенные выше входного окна вентилятора, совместно с разделительной стенкой образуют всасывающий патрубок, который осуществляет всасывание воздушного потока под углом 360o относительно нагнетаемого потока. При этом всасываемый воздушный поток движется к рабочему колесу встречно и параллельно нагнетаемому, то есть C-образно.

Данная конструкция вентилятора позволяет использовать его, например, в пневмосистемах зерно- и семяочистительных машин, так как делает возможным разместить вентилятор в колене, соединяющем воздухоподводящий канал с пневмосепарирующим каналом, расположенными параллельно и имеющими смежную стенку. Кроме того, такой вентилятор имеет относительно небольшие габариты и соответственно металлоемкость, а также небольшие затраты энергии на генерирование воздушного потока, по сравнению с прототипом.

В итоге при работе предлагаемого устройства достигается положительный эффект, превосходящий эффект прототипа. Новая совокупность признаков заявляемого устройства, обеспечивающая получение положительного эффекта, указанного в цели изобретения, обладает существенными отличиями.

На фигуре 1 представлена предлагаемая аэродинамическая схема противоточного диаметрального вентилятора. Он содержит корпус 1 с входным окном 2, всасывающим 3 и нагнетательным 4 патрубками и разделяющую их плоскую стенку 5 с жалюзийной решеткой 6, а также установленное в корпус 1 рабочее колесо 7. Кроме того, на входной кромке 8 корпуса 1 вентилятора посредством криволинейной соединительной плоскости OA установлена прямолинейная стенка 10 (участок AB), параллельная плоской делительной стенке 5.

Противоточный диаметральный вентилятор работает следующим образом. При вращении рабочего колеса 7 воздух всасывается во входной патрубок 3 и через входное окно 2 подводится к рабочему колесу, проходит его внутреннее пространство, выходит из колеса 7 и нагнетается в выходной патрубок 4. Корпус 1 формирует и направляет воздушный поток, выходящий из рабочего колеса 7, а стенка 5 разделяет входящий и выходящий воздушные потоки. При этом образуется вихрь, центр которого стабилизируется жалюзийной решеткой 6. Стабилизация центра вихря способствует снижению уровня шума и расширению диапазона устойчивой работы диаметрального вентилятора. Кроме этого, в результате установки криволинейной плоскости 9 и прямолинейной стенки 10 на входной кромке 8 корпуса 1 вентилятора всасываемый воздух движется по отношению к нагнетаемому воздуху противоточно и параллельно, то есть под углом 360o. Кроме того, во входном патрубке 3 вдоль прямолинейной стенки 10 образуется вихрь, движущийся навстречу всасываемому воздушному потоку и влияющий на расход воздуха вентилятора.

Исследование вентилятора предлагаемой аэродинамической схемы проводилось согласно ГОСТу 10921-90 с использованием нагнетательной трубы [3, 4]. Замеры осуществлялись с помощью трубки Пито-Прандтля и микроманометром ММН-240. Дросселирование нагнетательной трубы проводилось сменными перфорированными диафрагмами (заслонками).

Вначале был исследован диаметральный вентилятор, аэродинамическая схема которого была выполнена в соответствии с а.с. N 1314144 [1].

Вентилятор имел наружный диаметр рабочего колеса D2 = 0,3 м (число лопаток Z = 16; их толщина t = 1 мм; длина хорды lx = 59 мм; угол установки на наружном диаметре 2 = 164o). Ширина проточной части вентилятора составляла 100 мм. Исследования проводились при частоте вращения колеса n = 1060 мин-1.

При свободном заборе воздуха исходная схема вентилятора обеспечивала: максимальную подачу воздуха Qmax = 1300 м3/ч. При этом полное номинальное давление P = 240 Па, номинальная подача воздуха Qн = 1070 м3/ч, а максимальный коэффициент полезного действия max = 0,4.

После этого переоборудовали вентилятор в соответствии с приведенной фигурой 1. В ходе исследований перемещали прямолинейную стенку 10, изменяя глубину H всасывающего патрубка 3 от 0,25 до 0,67 м с интервалом через 0,06 м. При этом длина прямолинейной стенки оставалась постоянной – L = 0,46 м.

Опытные данные, представленные на фигуре 2, свидетельствуют о том, что наличие входного канала с названными размерами оказывает существенное влияние на работу противоточного вентилятора. Так, например, при H = 0,25 м максимальный расход снизился до 900 м3/ч, а max – до 0,20. При дальнейшем увеличение параметра H наблюдается возрастание максимального, полного, номинального давления и номинальной подачи воздуха, а также максимальных коэффициентов полезного действия и при H = 0,67 м эти значения достигают показателей вентилятора при свободном заборе воздуха (исходной схемы). Дальнейшее увеличение параметра H практически не оказало влияния на аэродинамические показатели вентилятора.

Изучение движения воздушного потока во входном патрубке с помощью трубки Пито-Прандтля, флюгерков из шелковых нитей, выявило наличие вихревого движения воздуха вдоль прямолинейной стенки глубиной 0,06 … 0,08 м. Перемещение прямолинейной стенки и увеличение за счет этого глубины входного патрубка показало, что вихрь перемещается вслед за стенкой, что способствует увеличению зоны всасывания воздуха в вентилятор. Уменьшение длины прямолинейной стенки L от 0,46 до 0 м (от B до О) выявило увеличение всех аэродинамических показателей.

Таким образом, геометрические размеры входного патрубка оказывают существенное влияние на работу противоточного вентилятора. Глубину входного патрубка при длине прямолинейной стенки L = 0,46 м (1,35 D2) целесообразно принять не менее 0,55 … 0,67 м, что соответственно составляет 1,85 … 2,25 D2.

Преимуществом предлагаемого изобретения по сравнению с прототипом является то, что оно имеет более компактную конструкцию и позволяет нагнетать воздушный поток по отношению к всасываемому потоку противоточно.

Литература

3. ГОСТ 10921-90. Вентиляторы радиальные и осевые. Методы аэродинамических испытаний. – М.: Издательство стандартов, 1991. – 32 с.

4. Центробежные вентиляторы / Под ред. Т.С. Соломаховой. – М.: Машиностроение, 1975. – 416 с.

Формула изобретения


Противоточный диаметральный вентилятор, содержащий корпус с входным и выходным патрубками и разделяющей их плоской стенкой, снабженной жалюзийной решеткой, и установленное в корпус рабочее колесо, отличающийся тем, что на входной кромке корпуса вентилятора, выше входного отверстия, закреплена прямолинейная стенка, параллельная разделяющей плоской стенке, образующая входной канал, при этом сопряжение прямолинейной стенки с входной кромкой корпуса вентилятора выполнено, например, по логарифмической спирали.

РИСУНКИ

Рисунок 1, Рисунок 2


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 22.12.2001

Номер и год публикации бюллетеня: 11-2003

Извещение опубликовано: 20.04.2003


Categories: BD_2166000-2166999