Патент на изобретение №2166619
|
||||||||||||||||||||||||||
(54) СПОСОБ РАЗРАБОТКИ НЕФТЯНОГО МЕСТОРОЖДЕНИЯ СО СЛОИСТО-НЕОДНОРОДНЫМИ ПЛАСТАМИ С ПОМОЩЬЮ КОНТРОЛЯ ПОЛЕЙ ДАВЛЕНИЙ
(57) Реферат: Изобретение относится к нефтяной промышленности, а именно к способам разработки нефтяных месторождений со слоисто-неоднородными пластами с помощью контроля полей давлений. Обеспечивает повышение эффективности способа. Сущность изобретения: по способу предварительно определяют проницаемость, пористость, мощность каждого пропластка, вязкости агента вытеснения и вытесняемой жидкости, начальную и конечную насыщенности агентом вытеснения, рассчитывают модифицированные функции относительных фазовых проницаемостей, агента вытеснения жидкости, строят поля начальной нефтенасыщенности, проницаемости и мощностей каждого пропластка с последующим контролем фильтрационных потоков, формирующихся при разработке нефтяных месторождений со слоисто-неоднородными пластами, и рекомендуют проведение определенных геолого-технических мероприятий. Дополнительно исследуют упругие свойства агента вытеснения и вытесняемой жидкости и пористую среду на сжимаемость. Дополнительно собирают промыслово-технологическую информацию о работе каждой скважины, а также информацию о замерах пластового и забойного давлений на скважинах. С учетом всей собранной информации осуществляют математическое моделирование процессов фильтрации с приемлемой степенью совпадения расчетных и фактических технологических показателей и на основе математического моделирования на определенные даты строят поля среднепластового давления. По построенным полям выявляют застойные зоны, зоны повышенного и пониженного пластового давления. Проводят регулирование объемов закачки и отборов жидкости. Дополнительно выделяют группы скважин, для которых отсутствует информация о замерах пластового давления на определенную дату, и восстанавливают эту информацию на основе математического моделирования. 1 з.п. ф-лы, 4 ил., 2 табл. Изобретение относится к нефтяной промышленности, а именно к способам разработки нефтяных месторождений со слоисто-неоднородными пластами с помощью контроля полей давлений. Способ разработки нефтяного месторождения с определением полей давлений по основной формуле теории упругого режима фильтрации предлагается в [1] (аналог). Однако в [1] при построении полей давлений не рассчитываются поля насыщенности агентом вытеснения, что не позволяет в полной мере вести контроль за материальным балансом и в значительной мере снижает прикладную ценность получаемых результатов. По прототипу [2] в способе разработки нефтяных месторождений со слоисто-неоднородными пластами для математического моделирования процессов фильтрации в слоисто-неоднородной пористой среде предварительно определяют проницаемость, пористость, мощность каждого пропластка, вязкости агента вытеснения и вытесняемой жидкости, начальную и конечную насыщенности агентом вытеснения, определяют модифицированные функции относительных фазовых проницаемостей (МФ ОФП) агента вытеснения и вытесняемой жидкости, строят поля начальной нефтенасыщенности, проницаемости и мощностей каждого пропластка, осуществляют математическое моделирование процессов фильтрации в слоисто-неоднородной пористой среде с последующим контролем фильтрационных потоков, формирующихся при разработке нефтяных месторождений, и рекомендуют проведение геолого-технических мероприятий. Поскольку в прототипе не учитывается изменение поля текущей нефтенасыщенности и не производится корректировка данных по информации о замерах пластового и забойного давлений на скважинах в процессе математического моделирования процессов фильтрации, то к недостаткам прототипа следует отнести неадекватное описание принятой в прототипе математической модели протекающих в пласте процессов фильтрации и, соответственно, недостаточная эффективность контроля за разработкой. Процесс многофазной фильтрации упругой жидкости описывается следующей системой дифференциальных уравнений (1)-(4): (1) (2)P/Г = Po(x,y, ); (3)Sн(x,y,O) = Sн0(x,y) (4) где Г – граница исследуемой области ; N – число скважин; Qv – расход v-ой скважины, причем при Qv > 0 – скважина нагнетательная, а если Qv < 0, то скважина – добывающая, обобщенный коэффициент сжимаемости жидкости; k – абсолютная проницаемость; kв и kн – модифицированные функции ОФП воды и нефти соответственно; в, н – вязкости воды и нефти; Sн, S0н – текущая и начальная нефтенасыщенность; P – текущее поле давлений, P0 – давление на границе области; x, y – пространственные и – временная переменные.
Привлечение дополнительной информации о замерах пластового и забойного давлений на скважинах повышает достоверность математического моделирования и позволяет точнее восстановить наиболее реальную картину фильтрационных потоков в пласте, что отражается в совпадении фактических и расчетных технологических показателей (например, динамики обводненности по скважинам).
Решаемая предлагаемым изобретением задача и ожидаемый технический результат заключается в повышении эффективности способа разработки нефтяных месторождений со слоисто-неоднородными пластами с помощью полей давлений, за счет учета изменения поля текущей нефтенасыщенности и корректировки данных по информации о замерах пластового и забойного давлений на скважинах в процессе математического моделирования процессов фильтрации. Предлагаемый способ разработки нефтяных месторождений со слоисто-неоднородными пластами с помощью полей давлений позволит обеспечить эффективность проводимых геолого-технических мероприятий. Необходимый технический результат достигается тем, что в способе разработки нефтяного месторождения со слоисто-неоднородными пластами с помощью контроля полей давлений, включающий определение проницаемости, пористости, мощности каждого пропластка, вязкостей агента вытеснения и вытесняемой жидкости начальной и конечной насыщенности агентом вытеснения модифицированных функций относительных фазовых проницаемостей агента вытеснения и вытесняемой жидкости и построение полей начальной нефтенасыщенности, проницаемости и мощностей каждого пропластка, математическое моделирование процессов фильтрации в слоисто-неоднородной пористой среде с последующим контролем фильтрованных потоков, формирующихся при разработке нефтяных месторождений, и проведение геолого-технических мероприятий, согласно изобретению дополнительно исследуют упругие свойства агента вытеснения и вытесняемой жидкости и пористую среду на сжимаемость, дополнительно собирают промыслово-технологическую информацию о работе каждой скважины, а также информацию о замерах пластового и забойного давлений на скважинах, с учетом всей собранной информации осуществляют математическое моделирование процессов фильтрации с приемлемой степенью совпадения расчетных и фактических технологических показателей и на основе математического моделирования на разные даты строят поля среднепластового давления, по построенным полям выявляют застойные зоны, зоны повышенного и пониженного пластового давления, а также проводят регулирование объемов закачки и отборов жидкости. Дополнительно выделяют группы скважин, для которых отсутствует информация о замерах пластового давления на разные даты и восстанавливают эту информацию на основе математического моделирования.
Сопоставительный анализ существенных признаков предлагаемого технического решения и прототипа позволяет сделать вывод о соответствии заявляемого изобретения критерию “новизна”.
Что касается “изобретательского уровня”, то до сих пор не производилось построение полей давлений на основе совместного применения математического моделирования упругого пласта и замеров пластового и забойного давлений на скважинах. Причем в ходе математического моделирования учитывается информация о замерах давлений на скважинах. Такой подход позволяет достовернее согласовывать получаемые результаты с реальной технологической ситуацией. Таким образом, отличительные признаки предлагаемого технического решения являются новыми, а заявляемая совокупность признаков соответствует критерию “изобретательский уровень”.
Способ предпочтительно осуществляется следующей последовательностью операций.
1. Определение по данным геологических исследований в скважинах (ГИС) и лабораторных исследований проницаемости, пористости, упругих свойств и вязкостей агента вытеснения и вытесняемой жидкости, сжимаемости пористой породы, начальной и конечной насыщенности агентом вытеснения, мощности каждого пропластка вскрытого скважиной пласта по всему участку нефтяного месторождения.
2. Дополнительный сбор промыслово-технологической информации о работе каждой скважины и определение для каждой скважины участка месторождения МФ ОФП агента вытеснения и вытесняемой жидкости с учетом промысловой информации о вязкостях компонентов фильтрации.
3. По дополнительно собранной информации о замерах пластового и забойного давлений на скважинах выделяют группы скважин, для которых отсутствует информация о замерах пластового давления на определенную дату.
4. Построение полей начальной нефтенасыщенности, проницаемости и мощностей каждого пропластка. Математическое моделирование процессов фильтрации в пористой среде, с учетом математической модели геологического строения пласта и информации о замерах пластового и забойного давлений на скважинах.
5. При неудовлетворительных результатах математического моделирования процессов фильтрации в слоисто-неоднородном пласте с точки зрения сопоставления с реальной технологической ситуацией. Возвращение к пункту 4.
6. По результатам математического моделирования, на разные даты, построение полей среднепластового давления. По построенным полям определяют застойные зоны, зоны повышенного и пониженного пластового давления, а также проводят регулирование объемов закачки и отборов жидкости.
Пример конкретного осуществления способа разработки нефтяного месторождения со слоисто-неоднородными пластами с помощью полей давленийРассмотрим слоисто-неоднородный пласт AC11 Лемпинского нефтяного месторождения. Разработка основной залежи пласта ведется 161 эксплуатационными скважинами. Из них на 01.01.99 г. 64 – добывающих, 23 – нагнетательных и 74 скважины находятся в бездействии. 1. В таблице 1 приведены характеристики слоисто-неоднородного пласта AC11 Лемпинского месторождения по одной из скважин. Пористость пропластков m(i) считалось постоянной и равной 0,2. Определяемая по лабораторным исследованиям сжимаемость нефти, воды и пористой среды в пласте AC11 Лемпинского месторождения равны 10-9 Па-1, 4 10-10 Па-1 и 10-19 Па-1 соответственно. Вязкости нефти и воды – 3,67 мПа с и 0,3 мПа с. Начальная (SBmin) и конечная (SBmax) насыщенности агентом вытеснения – 0,4 и 0,74 соответственно.
Аналогично определяются параметры пропластков по каждой скважине участка месторождения.
2. В результате исследования большого числа кернов пласта AC11 Лемпинского месторождения, для характерных проницаемостей данного месторождения, получены функциональные зависимости, по которым определялись характеристики отдельных пропластков:![]() где Sв – водонасыщенность.
3. В таблице 2 приведена часть данных о замерах пластового давления за 1998 год.
Имеются аналогичные таблицы замеров пластового и забойного давлений по скважинам по годам на конец календарного года. По этим таблицам определяются группы скважин, для которых отсутствуют замеры пластового давления, в 1998 году замер не производился.
4. По данным ГИС, определенным в пункте 1, рассчитываются поля начальной нефтенасыщенности, проницаемости и мощностей каждого пропластка. Математическое моделирование проводилось на квазитрехмерной модели пласта с детальным описанием работы скважин. Расчетная сетка модели 85х55. В процессе математического моделирования корректировались значения пластового давления в районе скважин, для которых есть информация о замерах пластового и/или забойного давлений, для других скважин, для которых такая информация отсутствует. Корректировка значений пластового давления производилась только в том случае, если данные значения выходили за границы среднестатистических в данном году.
В качестве метода решения уравнений (1) – (2) применен хорошо известный метод сеток [3] – [4].
5. Критерием адекватности математической модели фактическим фильтрационным процессам, протекающим в пласте, являлось совпадение интегральных кривых обводненности и кривых накопленной добычи нефти, а также совпадение кривых обводненности и добычи нефти по большинству моделируемых скважин. На фиг. 1 представлены результаты адаптации работы высокодебитной скважины N 540. Аналогичные результаты были получены и по большинству других высокопродуктивных скважин.
6. На фиг. 2 представлены результаты изменения динамики средне-пластового давления в районе скважины N 540, по данным математического моделирования и значениям замеров пластового давления на этой скважине (на 1992, 1993, 1996 и 1997 гг.). На фиг. 3 представлена карта среднепластового давления пласта AC11 Лемпинского месторождения, построенная по результатам математического моделирования, с использованием имеющейся информации о замерах пластового и забойного давлений на скважинах (имеются аналогичные карты на разные даты, позволяющие прослеживать изменение среднепластового давления в динамике).
На основе данной карты возможно проведение анализа текущего состояния разработки месторождения. Так, на фиг. 4 представлена карта направлений фильтрационных потоков, ранжированных по величине градиента давлений (жирными стрелками отображены поля градиентов давлений, где grad P > 0.1 атм/м).
Анализ фиг. 3 – 4 показал, что в районе разрезающего нагнетательного ряда (скважины NN 183 – 188 – 193) повышенное среднепластовое давление (фиг. 3), что указывает на перекаченность пласта, особенно в районе скважин NN 191, 192, 193 (фиг. 4). Возможны рекомендации дальнейшей разработки: снизить закачку жидкости на этих скважинах.
В районе добывающих скважинах NN 1506, 1505, 607 (фиг. 3) пониженное среднепластовое давление, что подтверждено замерами пластового давления на скважинах NN 607 и 1505 (табл. 2), и большими градиентами давлений (фиг. 4) в районе этих добывающих скважин. Рекомендуется уменьшить интенсивность отбора жидкости или перевод скважин NN 584 и 608 под нагнетание.
Таким образом, предложенный способ позволяет более эффективно производить разработку нефтяного месторождения со слоисто-неоднородными пластами, улучшив результаты планирования геолого-технических мероприятий по доизвлечению остаточной нефти. Изобретение промышленно применено, так как используется доступное лабораторное оборудование и ЭВМ.
Источники информации1. Басниев К.С. и др. Подземная гидравлика. – М.: Недра, 1993, 303 с. 2. Патент РФ N 2092691, E 21 В 47/00, 1997. 3. Самарский А.А. Теория разностных схем. – М.: Наука, 1977, 656 с. 4. Самарский А.А. и др. Разностные методы решения задач газовой динамики. – М.: Наука, 1980, 352 с. Формула изобретения
РИСУНКИ
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
Номер и год публикации бюллетеня: 21-2003
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 04.04.2003 № 16420
Извещение опубликовано: 27.07.2003
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
Прежний патентообладатель:
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 16.03.2004 № 18732
Извещение опубликовано: 10.08.2004 БИ: 22/2004
PC4A – Регистрация договора об уступке патента Российской Федерации на изобретение
Прежний патентообладатель:
(73) Патентообладатель:
Дата и номер государственной регистрации перехода исключительного права: 04.10.2005 № РД0002515
Извещение опубликовано: 20.12.2005 БИ: 35/2005
MM4A – Досрочное прекращение действия патента СССР или патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 04.09.2006
Извещение опубликовано: 10.01.2008 БИ: 01/2008
|
||||||||||||||||||||||||||

(1)
(2)
); (3)
Г – граница исследуемой области
; N – число скважин; Qv – расход v-ой скважины, причем при Qv > 0 – скважина нагнетательная, а если Qv < 0, то скважина – добывающая,
обобщенный коэффициент сжимаемости жидкости; k – абсолютная проницаемость; kв и kн – модифицированные функции ОФП воды и нефти соответственно;
в,
10-10 Па-1 и 10-19 Па-1 соответственно. Вязкости нефти и воды – 3,67 мПа
Sв – водонасыщенность.
3. В таблице 2 приведена часть данных о замерах пластового давления за 1998 год.
Имеются аналогичные таблицы замеров пластового и забойного давлений по скважинам по годам на конец календарного года. По этим таблицам определяются группы скважин, для которых отсутствуют замеры пластового давления, в 1998 году замер не производился.
4. По данным ГИС, определенным в пункте 1, рассчитываются поля начальной нефтенасыщенности, проницаемости и мощностей каждого пропластка. Математическое моделирование проводилось на квазитрехмерной модели пласта с детальным описанием работы скважин. Расчетная сетка модели 85х55. В процессе математического моделирования корректировались значения пластового давления в районе скважин, для которых есть информация о замерах пластового и/или забойного давлений, для других скважин, для которых такая информация отсутствует. Корректировка значений пластового давления производилась только в том случае, если данные значения выходили за границы среднестатистических в данном году.
В качестве метода решения уравнений (1) – (2) применен хорошо известный метод сеток [3] – [4].
5. Критерием адекватности математической модели фактическим фильтрационным процессам, протекающим в пласте, являлось совпадение интегральных кривых обводненности и кривых накопленной добычи нефти, а также совпадение кривых обводненности и добычи нефти по большинству моделируемых скважин. На фиг. 1 представлены результаты адаптации работы высокодебитной скважины N 540. Аналогичные результаты были получены и по большинству других высокопродуктивных скважин.
6. На фиг. 2 представлены результаты изменения динамики средне-пластового давления в районе скважины N 540, по данным математического моделирования и значениям замеров пластового давления на этой скважине (на 1992, 1993, 1996 и 1997 гг.). На фиг. 3 представлена карта среднепластового давления пласта AC11 Лемпинского месторождения, построенная по результатам математического моделирования, с использованием имеющейся информации о замерах пластового и забойного давлений на скважинах (имеются аналогичные карты на разные даты, позволяющие прослеживать изменение среднепластового давления в динамике).
На основе данной карты возможно проведение анализа текущего состояния разработки месторождения. Так, на фиг. 4 представлена карта направлений фильтрационных потоков, ранжированных по величине градиента давлений (жирными стрелками отображены поля градиентов давлений, где grad P > 0.1 атм/м).
Анализ фиг. 3 – 4 показал, что в районе разрезающего нагнетательного ряда (скважины NN 183 – 188 – 193) повышенное среднепластовое давление (фиг. 3), что указывает на перекаченность пласта, особенно в районе скважин NN 191, 192, 193 (фиг. 4). Возможны рекомендации дальнейшей разработки: снизить закачку жидкости на этих скважинах.
В районе добывающих скважинах NN 1506, 1505, 607 (фиг. 3) пониженное среднепластовое давление, что подтверждено замерами пластового давления на скважинах NN 607 и 1505 (табл. 2), и большими градиентами давлений (фиг. 4) в районе этих добывающих скважин. Рекомендуется уменьшить интенсивность отбора жидкости или перевод скважин NN 584 и 608 под нагнетание.
Таким образом, предложенный способ позволяет более эффективно производить разработку нефтяного месторождения со слоисто-неоднородными пластами, улучшив результаты планирования геолого-технических мероприятий по доизвлечению остаточной нефти. Изобретение промышленно применено, так как используется доступное лабораторное оборудование и ЭВМ.
Источники информации