Патент на изобретение №2376242
|
||||||||||||||||||||||||||
(54) СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ СЕЛЕНИДА ЦИНКА
(57) Реферат:
Изобретение может быть использовано в химической промышленности. Способ переработки отходов селенида цинка включает окисление селенида цинка при атмосферном давлении в растворе пероксодисульфата аммония с концентрацией 35-37% при температуре 70-90°С. Далее проводят очистку полученного чернового селена сульфитно-циклическим методом. Изобретение позволяет безотходно использовать селенид цинка и упростить переработку отходов селенида цинка, образующихся при изготовлении материалов в полупроводниковой технике, получая при этом селен в одну стадию с выходом 85-95%.
Изобретение относится к неорганической химии и касается разработки способа переработки отходов селенида цинка, образующихся при изготовлении материалов в полупроводниковой технике. Уровень техники Известен способ переработки селенида цинка путем его окисления кислородом с последующей конденсацией образующихся паров диоксида селена (см. ЖНХ, т.5, вып.10, 1960; Неорганические материалы, т.11, 6, 1975). Недостатком данного способа переработки является сложность технологического процесса и аппаратурного оформления. Известен способ получения диоксида селена, включающий окисление азотной кислотой, упаривание полученного раствора с выделением диоксида селена и очистку последнего путем растворения в серной кислоте с концентрацией 70-95% и последующим выделением целевого продукта из раствора повышением концентрации серной кислоты до 99-100% (см. А.С. SU 1142443, кл. С01В 19/04, опубл. 28.02.1985 г.). Недостатком данного способа является низкое качество получаемого продукта. Наиболее близким по технической сущности, достигаемому положительному эффекту и принятый авторами за прототип является способ получения высокочистого диоксида селена окислением селенида цинка при атмосферном давлении с последующей конденсацией паров диоксида селена. Окисление селенида цинка ведут в две стадии одновременно двумя потоками кислорода, причем на первой стадии окисление селенида цинка ведут потоком кислорода при температуре не ниже 300°С, а на второй – доокисление летучих продуктов, образовавшихся на первой стадии, при температуре не ниже 600°С. Потоки кислорода на первой и второй стадиях подают в соотношении 1:(3-4), соответственно (см. пат. RU 2270166, кл. С01В 19/00, опубл. 20.02.2006 г.). Окисление необходимо проводить в трубчатой печи при температуре 650-800°С с использованием кислорода. При этом реакция идет по схеме: Для получения селена из диоксида селена и селенистой кислоты, образующихся на втором этапе окисления, необходимо проводить их восстановление, например, сернистым ангидридом, а затем очистку селена известными способами, например сульфитно-циклическим, что усложняет процесс. Получение селена этим методом в один этап невозможно. Таким образом, недостатком прототипа является технологическая сложность аппаратурного оформления процесса, его многостадийность. Раскрытие изобретения Задачей предлагаемого изобретения является разработка способа переработки отходов селенида цинка с получением селена в одну стадию и созданием замкнутого безотходного процесса по селениду цинка. Технический результат, который может быть достигнут с помощью предлагаемого изобретения, сводится к упрощению процесса переработки отходов селенида цинка с выделением селена в одну стадию и безотходности процесса использования селенида цинка. Технический результат достигается с помощью способа переработки отходов селенида цинка, включающего окисление селенида цинка при атмосферном давлении с последующей очисткой полученного чернового селена сульфитно-циклическим способом, при этом окисление проводят в растворе пероксодисульфата аммония при его концентрации 35-37% и температуре 70-90°С, что значительно упрощает технологический процесс, делает его одностадийным и циклически замкнутым по использованию селенида цинка. Таким образом, поставленная задача решается за счет того, что в способе переработки отходов селенида цинка согласно изобретению окисление селенида цинка ведут в растворе окислителя пероксодисульфата аммония при температуре 70-90°С. При этом реакция идет по схеме: Как показали исследования, дальнейшее окисление в этих условиях почти не проходит, и в результате получается чистый селен. Существенными признаками, совокупность которых направлена на решение связанной с целью изобретения задачи, являются: – окисление селенида цинка в растворе пероксодисульфата аммония с концентрацией 35-37%; – окисление при температуре 70-90°С. Только использование пероксодисульфата аммония в этих условиях позволяет получить чистый селен. Использование других окислителей, в частности перекиси водорода, перхлората и перманганата калия, не позволяет получить чистый селен, т.к. реакция окисления протекает до конца с образованием селенита и селената цинка по схеме: Отличительным признаком по отношению к прототипу у заявляемого изобретения является использование в качестве окислителя пероксодисульфата аммония, применение которого позволяет проводить процесс получения селена в одну стадию. Температура и концентрация пероксодисульфата аммония подобраны опытным путем в соответствии с оптимальной продолжительностью процесса и максимальным выходом селена с единицы объема. При температуре ниже 70°С скорость реакции незначительна и продолжительность окисления составляет более 7 часов в объеме 1 л. С повышением температуры скорость реакции окисления увеличивается, и процесс окисления можно провести за 4 часа в том же объеме. Однако при температуре выше 90°С наблюдается интенсивный гидролиз пероксодисульфата аммония с выделением пероксида водорода, что приводит к увеличению расхода реагентов, загрязнению селена примесями селенита и селената и к потерям селена с маточными растворами. Наибольшая скорость реакции окисления наблюдается в концентрированном растворе пероксодисульфата аммония при его максимальной растворимости в воде (58 г в 100 г воды) (см. В.А.Рабинович, З.Я.Хавин «Краткий химический справочник», «Химия», Ленинградское отделение, 1977, с.54). Использование концентрированного раствора пероксодисульфата аммония позволяет получить максимальный выход селена с единицы объема реактора. Таким образом, только использование в качестве окислителя пероксодисульфата аммония при температуре реакции 70-90°С позволяет получить из отходов селенида цинка селен в одну стадию. Это является новизной предлагаемого способа. Сущность способа переработки отходов селенида цинка заключается в следующем. В емкость заливают определенное количество воды, например 320 мл, и при перемешивании добавляют определенное количество пероксодисульфата аммония, например 180 г. В полученный раствор засыпают определенное количество, например 120 г, селенида цинка. Суспензию нагревают до 70-90°С и выдерживают реакционную массу при этой температуре и при атмосферном давлении в течение 4-7 часов в зависимости от количества загруженных компонентов и температуры процесса окисления. Выход селена 85-95%. Очистку чернового селена от примеси неокисленного селенида цинка проводят известным сульфитно-циклическим методом (см. Кудрявцев А.А. Химия и технология селена и теллура, М., 1968, с.233). Нерастворяющийся в сульфите натрия селенид цинка отделяют от раствора селеносульфата натрия и вновь направляют на переработку, тем самым обеспечивая безотходное использование отходов селенида цинка. Осуществление изобретения Примеры конкретного выполнения способа переработки отходов селенида цинка. Пример. 1. В стеклянную емкость, например стакан, заливают 320 мл воды и при перемешивании растворяют 180 г пероксодисульфата аммония (концентрация 36%). После его растворения загружают 120 г размолотого селенида цинка, суспензию нагревают и выдерживают реакционную массу при температуре 65°С. Через 16 часов в реакционной массе обнаруживается только 20% селена, а через 32 часа количество образовавшегося селена составляет не более 25%. Таким образом, при температуре 65°С реакция не проходит до конца и, следовательно, окисление селенида цинка при этой температуре экономически невыгодно из-за малого выхода селена и большой длительности процесса. Указанная температура не является оптимальной. Пример 2. Процесс проводят аналогично примеру 1, но реакцию проводят при температуре 70°С. Продолжительность окисления 7 часов. Выход селена 53 г (85%). Для очистки чернового селена от примеси непрореагировавшего селенида цинка черновой селен растворяют в кипящем растворе сульфита натрия. После фильтрации полученный раствор селеносульфата натрия охлаждают, а выпавший при охлаждении селен отделяют, промывают от сульфита натрия и сушат. Полученный селен соответствует по качеству марке СТ-1 по ГОСТ 10298-79. Пример 3. Процесс проводят аналогично примеру 1, но реакцию проводят при температуре 90°С. Реакция проходит до конца в течение 4 часов. Выход селена 59 г (95%). По способу 2 и 3 переработка отходов селенида цинка позволяет получить селен с выходом 85% и 95%, соответственно, при этом продолжительность реакции при 70°С – 7 час, а при 90°С – 4 часа. Пример 4. Процесс проводят аналогично примеру 1, но реакцию проводят при температуре 95°С. Продолжительность окисления 2 часа. Выход селена 40 г (64%). В маточнике содержатся селениты и селенаты в значительных количествах. При температуре реакции выше 90°С снижается выход селена в связи с гидролизом пероксодисульфата аммония и образованием пероксида водорода, что, в свою очередь, приводит к образованию селенитов и селенатов и загрязнению ими образующегося селена. Таким образом, наиболее оптимальными являются примеры 2 и 3, которые позволяют получить селен с выходом 85-95%. Предлагаемое решение по сравнению с прототипом и другими известными техническими решениями имеет следующие преимущества: – упрощение процесса переработки отходов селенида цинка с выделением селена в одну стадию; – использование в качестве окислителя пероксодисульфата аммония; – безотходность процесса по селениду цинка.
Формула изобретения
Способ переработки отходов селенида цинка, включающий окисление селенида цинка при атмосферном давлении с последующей очисткой полученного чернового селена сульфитно-циклическим способом, отличающийся тем, что окисление проводят в растворе пероксодисульфата аммония с концентрацией 35-37% при температуре 70-90°С.
|
||||||||||||||||||||||||||