(21), (22) Заявка: 2008125026/28, 23.06.2008
(24) Дата начала отсчета срока действия патента:
23.06.2008
(46) Опубликовано: 27.10.2009
(56) Список документов, цитированных в отчете о поиске:
2, С.99-103, РИС.2. RU 72077 U1, 27.03.2008. RU 21457 U1, 20.01.2002. JP 57008452 А, 16.01.1982.
Адрес для переписки:
607189, Нижегородская обл., г. Саров, ул. Силкина, 26, кв.28, А.Я. Картелеву
|
(72) Автор(ы):
Картелев Анатолий Яковлевич (RU), Сидоров Александр Александрович (RU), Павлов Александр Николаевич (RU)
(73) Патентообладатель(и):
Картелев Анатолий Яковлевич (RU)
|
(54) ДАТЧИК ТОКА И НАПРЯЖЕНИЯ
(57) Реферат:
Изобретение относится к электротехнике и предназначено для одновременного измерения напряжения и тока в высоковольтных коаксиальных формирующих и передающих линиях. Технический результат – расширение информационных возможностей и повышение точности определения энергии и мощности, выделяемых в нелинейных нагрузках. В датчике тока (индуктивном поясе Роговского), выполненном в виде тороидальной катушки, намотанной на изоляционном каркасе, размещенной в кольцевой проточке на одном из рабочих электродов высоковольтной установки или линии передачи, прикрытой металлической крышкой и соединенной с рабочим электродом одним своим выводом напрямую, а другим выводом – через резистивную нагрузку, новым является то, что металлическая крышка изолирована от рабочего электрода и соединена с рабочим электродом через емкостную нагрузку. Кроме того, резистивная и емкостная нагрузки размещены за пределами рабочего электрода высоковольтной установки или обратного проводника линии передачи в отдельных дополнительных экранах; резистивная и емкостная нагрузки подключены через общий кабель к одному регистратору. 4 з.п. ф-лы, 7 ил.
Изобретение относится к электротехнике и предназначено для одновременного измерения тока и напряжения в высоковольтных коаксиальных формирующих и передающих линиях.
Задача измерения величины мощности, выделяющейся в высоковольтных электроразрядных установках в соответствии с формулой P=U·I, часто затруднена или не находит решения из-за невозможности одновременного измерения тока и напряжения в разрядной цепи, а точнее в исследуемой нагрузке.
12, с.1645-1648) описаны емкостный датчик напряжения и датчик тока с индуктивным шунтом.
Емкостный датчик напряжения представляет собой (см. фиг.2 вышеуказанной статьи) цилиндрический зондовый электрод, имеющий емкостную связь с центральным проводником формирующей линии и гальваническую связь с осциллографом. Зондовый электрод (или электрод связи) выполнен в виде металлического стакана диаметром 1,6 см и длиной 2,3 см. Для установки и герметизации зондового электрода в наружный проводник формирующей линии вварен специальный фланец с отверстием по центру. Зондовый электрод установлен в этом отверстии так, что дно электрода связи находится заподлицо с внутренней поверхностью наружного проводника формирующей линии. Боковая поверхность электрода связи изолирована от наружного проводника формирующей линии и корпуса фланца при помощи тефлоновой изоляционной втулки. В дно зондового электрода впаян одним концом резистор, второй конец которого подпаян к центральному штырю радиочастотного коаксиального разъема, закрепленному на фланце. При вышеуказанных размерах зондового электрода его емкость относительно внутреннего высоковольтного проводника формирующей линии оказалось равной 2,2 пФ, а относительно наружного заземленного проводника формирующей линии – 8 пФ.
Вследствие малой емкости зондового электрода относительно земли выходной сигнал с емкостного датчика пропорционален производной напряжения на формирующей линии. От коаксиального разъема выходной сигнал с емкостного датчика передавался коаксиальным кабелем в экранированное помещение и там интегрировался пассивным интегратором с постоянной времени RC5 мкс. Благодаря использованию интегратора электромагнитные помехи, идущие по коаксиальному кабелю, интенсивно ослаблялись, а результирующий сигнал становился пропорциональным напряжению на формирующей линии. При использовании пятимикросекундных интеграторов и пятидесятиомного передающего кабеля расчетная чувствительность емкостного датчика составила 22 мВ/кВ.
Датчик тока с индуктивным шунтом представляет собой (см. фиг.4 статьи) кольцевую канавку, проточенную в одном из фланцев обратного токопровода коаксиальной формирующей линии. Фланцы в месте канавки разделены воздушным зазором. Жила измерительного кабеля напрямую или через резистор соединена с внутренней поверхностью одного фланца, а оплетка измерительного кабеля подключена к наружной поверхности второго фланца через корпус кабельного разъема. Другими словами, измерительный кабель подключен к малому по размерам (сечение 0,8 × 0,8 см) и, соответственно, тороидальному и малоиндуктивному витку с током.
Недостатки использования известных емкостного датчика напряжения и датчика тока с индуктивным шунтом:
– амплитудная, фазовая и временная погрешности измерении напряжения и тока и, соответственно, неточность определения мощности, выделяемой в нагрузке, так как емкостный датчик напряжения и датчик тока с индуктивным шунтом устанавливаются в различных частях устройства для термоядерного синтеза: емкостный датчик устанавливался в водяной формирующей линии; датчик тока – в разрядной камере; выходные сигналы от них к осциллографам передавались по различным кабелям;
– необходимость применения третьего устройства для синхронного запуска осциллографов и приема сигналов от емкостного датчика напряжения и датчика тока с индуктивным шунтом.
Этими же недостатками страдают и отечественные системы для измерения напряжения и тока в импульсных высоковольтных системах. Так, при создании и исследовании мощного импульсного рентгеновского источника (см. статью В.А.Филатов, А.М.Гафаров, В.М.Корепанов, Н.Д.Антонов, А.В.Плотникова. Малогабаритный источник рентгеновского излучения – Рапид-М. Труды VII Забабахинских научных чтений, Изд-во РФЯЦ-ВНИИТФ, г.Снежинск, 2003 г.) для измерения тока диода и напряжения на проходном изоляторе были применены два типа делителей напряжения: омические и емкостные делители напряжения, а также индуктивные пояса Роговского.
Делители напряжения и индуктивные пояса из-за их различной конструкции располагались в различных местах установки Рапид-М и подключались к различным измерительным устройствам: делители напряжения устанавливались за включающим разрядником конденсаторной батареи и напротив проходного изолятора; индуктивные пояса Роговского – на входе в вакуумную разрядную камеру. Напряжение на самом диоде (после плазменных размыкателей) не измерялось, и поэтому мощность, выделяемую в диоде, определить не удалось. Кроме того, выходные сигналы с делителей напряжения и поясов Роговского были сдвинуты по времени друг относительно друга, а на кабельных измерительных линиях наблюдались дополнительные помехи в виде выравнивающих токов.
2, с.99-103, рис.2), представляющий собой тороидальную катушку индуктивности на изоляционном каркасе, размещенную в металлическом экране – в кольцевой проточке на аноде ускорителя и охватывающую ток – пучок электронов. От электростатических наводок тороидальная катушка индуктивности закрыта Г-образной металлической крышкой, гальванически соединенной с экраном – анодом на одной стороне проточки и образующей воздушный (изоляционный) лабиринт в экране на другой стороне проточки. Один вывод катушки индуктивности соединен с экраном, а второй вывод катушки индуктивности – с центральным штырем радиочастотного разъема, закрепленного на экране. Нагрузкой пояса служит дисковый резистор УНУ-Ш-0,25, встроенный в разъем. От разъема отходит измерительный кабель, связанный с осциллографом ОК-19М. При равномерной намотке катушки индуктивности и выборе постоянной времени пояса n=L/(R+r)>>и, где L – индуктивность пояса; r и R – активное сопротивление обмотки пояса и внешней резистивной нагрузки соответственно; и – длительность измеряемого импульса тока, ток в обмотке пояса и нагрузке обратно пропорционален числу витков катушки индуктивности i2=i1/w, где w – число витков обмотки пояса; i1 – ток пучка электронов.
Недостатки прототипа – ограниченные информационные возможности (измерение только параметров тока и импульсного магнитного поля в ускорителе).
Задача изобретения – повышение точности интерпретации и понимания физических процессов в системах с нелинейной нагрузкой (в термоядерных установках, ускорителях заряженных частиц, электрогидравлических установках и т.п.), где между током и напряжением нет очевидной и определенной зависимости.
Технический результат предлагаемого изобретения – расширение информационных возможностей датчика за счет дополнительного измерения напряжения; повышение точности определения мощности, генерируемой и выделяемой в высоковольтных коаксиальных формирующих и передающих линиях путем снижения амплитудной, временной и фазовой погрешностей измерения составляющих этой мощности, а также упрощение и удешевление конструкции измерительного устройства.
Технический результат достигается тем, что в известном датчике тока (поясе Роговского), выполненном в виде тороидальной катушки, намотанной на изоляционном каркасе, размещенной в кольцевой проточке на одном из рабочих электродов высоковольтной установки или линии передачи, прикрытой металлической крышкой и соединенной с рабочим электродом одним выводом напрямую, а другим выводом – через резистивную нагрузку, новым является то, что металлическая крышка изолирована от рабочего электрода и соединена с рабочим электродом через емкостную нагрузку.
Кроме того, резистивная и емкостная нагрузки размещены за пределами рабочего электрода высоковольтной установки или линии передачи в отдельных дополнительных экранах; резистивная и емкостная нагрузки подключены через общий кабель к одному регистратору.
Изоляция металлической крышки от одного из электродов высоковольтной установки или обратного проводника линии передачи и соединение ее с электродом установки или обратным проводником линии передачи через емкостную нагрузку обеспечивает:
– свободное прохождение через твердотельный (в виде эпоксидной смолы) или пленочный изолятор между крышкой и рабочим электродом установки измеряемого магнитного поля к тороидальной катушке индуктивности и нормальную работу индуктивного датчика тока (пояса Роговского);
– превращение металлической крышки в электрод связи, емкостно связанный одновременно с высоковольтным и заземленным электродами высоковольтной установки. С учетом внешней емкостной нагрузки металлическая крышка становится одним из электродов емкостного делителя. Напряжение на крышке и емкостной нагрузке при этом становится равным V2=V1(C1/CH), где V1 – напряжение на высоковольтном электроде; C1 – емкость между высоковольтным электродом и металлической крышкой; Сн – емкость внешней нагрузки. Это напряжение ослаблено примерно в 103-104 раз, и его можно без опасений передать дальше по измерительному кабелю и измерить осциллографом и по нему судить о том, как ведет себя высокое напряжение в электрофизической установке;
– пространственное совмещение активных элементов индуктивного датчика тока и емкостного датчика напряжения (они находятся в одной точке линии передачи или на одном электроде высоковольтной установки) и ликвидацию временной погрешности в измерениях мощности (за счет отсутствия разности времен пробега электромагнитной волны от датчика напряжения к датчику тока) и амплитудной погрешности (за счет отсутствия разности напряжений между отдельными частями – точками высоковольтной установки);
– возможность изготовления датчика тока и напряжения в виде одной цельной конструкции – специального коаксиального переходника, который может быть встроен (врезан) в любую точку формирующей линии, или фрагмента рабочего электрода высоковольтной установки. Тем самым уменьшается вдвое число врезок в заземленный проводник линии передачи, и уменьшаются затраты на изготовление и эксплуатацию комбинированного датчика напряжения и тока;
– ликвидацию на кабельных измерительных линиях дополнительных помех в виде выравнивающих токов (разъемы от магнитного и емкостного датчиков расположены рядом и под одним электрическим потенциалом) и обеспечение безопасности использования современных двухлучевых цифровых осциллографов.
Расположение резистивной и емкостной нагрузок за пределами рабочего электрода (рабочего объема) высоковольтной установки или обратного заземленного проводника линии передачи и в отдельных экранах обеспечивает:
– повышение помехоустойчивости электрического и магнитного каналов измерений, так как мощное импульсное магнитное поле, создаваемое током в высоковольтной установке или в передающей линии, не пронизывает низковольтные и чувствительные к помехам цепи резистивной и емкостной нагрузок датчиков напряжения и тока;
– возможность регулирования (за счет изменения параметров резистивной и емкостной нагрузок, расположенных в отдельных экранах) постоянной времени и чувствительности электрического и магнитного каналов измерений без внедрения собственно в передающую линию или рабочий объем высоковольтной установки, часто отвакуумированных или заполненных жидким диэлектриком.
Подключение резистивной и емкостной нагрузок к одному регистратору, например двухлучевому осциллографу, через идентичные или один общий измерительный кабель уменьшает временную погрешность измерений, так как автоматически результаты измерений напряжения и тока накладываются на одну временную шкалу, а также исключает необходимость во внешней синхронизации (канал U осциллографа может запускать канал I и наоборот).
На фиг.1 и 2 приведена конструкция (поперечный и продольный разрезы) предлагаемого датчика тока и напряжения.
На фиг.3 приведена фотография датчика тока и напряжения, спроектированного и изготовленного авторами согласно изобретению для целей измерения тока, напряжения и мощности, выделяемой в нелинейной нагрузке скважинных электрогидравлических аппаратов.
На фиг.4 приведены осциллограммы напряжения (положительный прямоугольный импульс амплитудой 9,736 В) и тока (отрицательный треугольный импульс амплитудой – 28,144 В), полученные с помощью предлагаемого датчика тока и напряжения фиг.3 при исследованиях электрических разрядов в пресной воде.
На фиг.5 приведены осциллограммы напряжения (положительный экспоненциальный импульс амплитудой 9,588 В) и тока (отрицательный экспоненциальный импульс амплитудой – 14,894 В), полученные с помощью предлагаемого датчика тока и напряжения фиг.3 при исследованиях электрических разрядов в минерализованной скважинной жидкости.
На фиг.5 и 6 приведены осциллограммы энергии, вводимой в канал разряда в воде, и активного сопротивления канала разряда в воде, рассчитанные на основе осциллограммы фиг.4.
Предлагаемый датчик тока и напряжения представляет собой специальный измерительный модуль, выполненный (см. фиг.1 и 2) в виде фрагмента высоковольтной коаксиальной линии передачи, и содержит внутренний высоковольтный проводник 1, наружный заземленный проводник 2 и промежуточный высоковольтный изолятор 3 в виде элегаза, твердой или жидкой изоляции.
В наружном заземленном проводнике 2 сделана кольцевая проточка, в которую уложена тороидальная катушка индуктивности 4 из медного изолированного проводника. Тороидальная катушка индуктивности 4 намотана на изоляционном каркасе 5. Продольные оси проточки и катушки индуктивности повторяют конфигурацию магнитной силовой линии. Один конец катушки 4 соединен с заземленным наружным проводником 2 напрямую, другой конец катушки 4 присоединен к центральному штырю первого коаксиального высокочастотного разъема 6, установленного на наружном заземленном проводнике 2 линии передачи.
Над тороидальной катушкой индуктивности 4 заподлицо с заземленным наружным проводником 2 или несколько выше него расположена крышка-электрод связи 7, выполненная в виде металлического кольца. Крышка-электрод связи 7 изолирована от катушки индуктивности 4 и заземленного проводника 2 линии передачи с помощью пленочной или эпоксидной изоляции 8. Крышка-электрод связи 7 соединена проводником с центральным штырем второго коаксиального высокочастотного разъема 9, установленного на наружном заземленном проводнике 2 линии передачи.
Первый 6 и второй 9 коаксиальные разъемы установлены рядом друг с другом.
Резистивная 10 и емкостная 11 нагрузки расположены за пределами наружного заземленного проводника 2 линии передачи в отдельных цилиндрических экранах 12 и 13. На торцах дополнительных экранов 12 и 13 установлены коаксиальные радиочастотные разъемы 14 и 15, 16 и 17. Для повышения теплоемкости и уменьшения индуктивности резистивная 10 и емкостная 11 нагрузки выполнены из нескольких параллельно соединенных резисторов и конденсаторов, расположенных симметрично вокруг оси экранов. Величины резистивной 10 и емкостной 11 нагрузок выбраны из соотношений (L4/R10)10и и C11Rосц10и, где и – длительность импульса тока или напряжения соответственно; L4 – индуктивность многовитковой спирали; Rосц – входное сопротивление осциллографа. Входные 14 и 16 разъемы на экранах нагрузок соединяются напрямую или короткими переходниками с разъемами 6 и 9 на наружном заземленном проводнике 2 линии передачи. От выходных разъемов 15 и 17, т.е. от резистивной 10 и емкостной 11 нагрузок, отходят коаксиальные кабели, служащие для передачи выходного сигнала с комбинированного датчика к регистратору. Кабели выполняются одинаковой длины. В качестве регистратора используется двухканальный осциллограф, предпочтительно с автономным (аккумуляторным) питанием. Учитывая отсутствие выравнивающих токов и аккумуляторное питание, осциллограф может быть установлен прямо на обратный проводник коаксиальной линии. Для повышения безопасности работ, например, в случае с плазменными камерами, заполненными тритием, или плазменными камерами, запитываемыми от взрывомагнитных генераторов, могут быть применены длинные измерительные кабели, а дополнительные экраны (коробочки) с резистивной и емкостной нагрузками могут быть установлены на концах кабелей (закреплены прямо на входах осциллографа).
В примере конкретного выполнения спроектированный и изготовленный авторами (см. фотографию фиг.3) датчик тока и напряжения выполнен как фрагмент коаксиальной линии передачи диаметром 102 мм и напряжением 30 кВ и установлен между коммутатором и электроразрядной камерой скважинного электрогидравлического аппарата «ЭРА-5» рабочим напряжением 30 кВ и энергоемкостью от 1 до 5 кДж. Корпус датчика тока и напряжения и тока содержит два металлических полуфланца, соединенных болтами. На противоположных концах корпуса датчика выполнены присоединительные резьбы М95, обеспечивающие присоединение его к корпусам коммутатора и электроразрядной камеры, выполняющим функцию обратного проводника коаксиальной линии передачи. Центральный высоковольтный проводник датчика имеет диаметр, позволяющий ему входить в контакт с цангами коммутатора и электроразрядной камеры аппарата. Центральный высоковольтный проводник отделен то наружного заземленного проводника промежуточным капролоновым изолятором. В одном из полуфланцев датчика выполнена кольцевая проточка, в которую установлена тороидальная катушка индуктивности. Над тороидальной катушкой индуктивности расположен кольцевой электрод, емкостно связанный с центральным высоковольтным проводником датчика и изолированный от него и корпуса датчика. Выводы от тороидальной катушки и электрода связи выполнены двумя коаксиальными кабелями длиной 4 м, заканчивающимися высокочастотными разъемами. Кабели от тороидальной катушки индуктивности и электрода связи подключены соответственно к резистивной и емкостной нагрузкам, расположенным в отдельных экранах и соединенным с двухлучевым цифровым осциллографом (на фото не показан). Величины резистивной и емкостной нагрузок датчика составляют 1 Ом и 40 нФ соответственно. Чувствительность датчика тока и напряжения составляет по току 1,96 В/кА и по напряжению 0,33 В/кВ. Датчик тока и напряжения имеет высоту (длину по оси) 200 мм и диаметр в районе расположения тороидальной катушки индуктивности 180 мм.
Предлагаемый датчик тока и напряжения работает следующим образом. При подаче на внутренний высоковольтный проводник линии передачи импульса напряжения амплитудой U между высоковольтным проводником 1 и электродом связи 7 произойдет перераспределение напряжений, как в стандартном емкостном делителе (электрод связи 7 и высоковольтный проводник 1 образуют цилиндрический конденсатор, а обратный заземленный проводник 2 играет роль охранного кольца). Соответственно, на электроде связи 7 и внешней емкостной нагрузке 11 появится импульс напряжения величиной U7=U11=U·(C17/C11), где С17 – емкость электрода связи 7 относительно высоковольтного электрода 1; С11 – емкость нагрузки 11 (емкость электрода связи 7 относительно заземленного проводника 2 роли не играет, так как она мала по сравнению с емкостью внешней нагрузки 11). Магнитная составляющая электромагнитной волны, распространяющейся в линии передачи (или магнитное поле разрядного тока), индуцирует в тороидальной катушке 4 напряжение, величина которого пропорциональна скорости нарастания магнитного поля dB/dt. Благодаря большим числу витков и индуктивности тороидальная катушка 4 работает в режиме интегратора. Соответственно, на резистивной нагрузке 10 появляется напряжение U10=(i/w)·R10, где i – ток в линии передачи; w – число витков тороидальной катушки индуктивности 4; R10 – сопротивление внешней резистивной нагрузки 10.
Авторы опробовали предлагаемый датчик тока и напряжения по фиг.3 в составе скважинного электрогидравлического аппарата «ЭРА-5» при исследованиях электрических разрядов в различных химреагентах и смесях, использующихся в технологиях повышения нефтеотдачи пластов (пресная и минерализованная вода, водонефтяные эмульсии и углеводородные растворители). Благодаря возможности одновременного измерения тока и напряжения в электроразрядной камере аппарата (см. фиг.4-7) получены данные по запаздыванию электрического пробоя и предразрядным потерям энергии, по активному сопротивлению канала разряда, энергии и мощности, выделяемой в канале разряда. Полученная дополнительная информация позволила рассчитать бризантный эффект электрического разряда в воде и давление на стенке обсадной колонны нефтяной скважины.
Таким образом, авторами показано и доказано, что в одном устройстве (в одной точке передающей линии или на одном из ее электродов высоковольтной установки) возможны:
– совмещение двух различных по конструкции и физике работы датчиков тока и напряжения;
– синхронное измерение без систематических амплитудной и временной погрешностей напряжения и тока в передающей линии или высоковольтной установке;
– получение дополнительных и точных данных об импедансе нелинейной во времени нагрузки Z(t)=U(t)/I(t) и мощности, выделяемой в этой нагрузке P(t)=U(t)·I(t).
Формула изобретения
1. Датчик тока, выполненный в виде тороидальной катушки индуктивности, намотанной на изоляционном каркасе, размещенной в кольцевой проточке на одном из рабочих электродов высоковольтной установки или линии передачи, прикрытой металлической крышкой и соединенной с рабочим электродом одним своим выводом напрямую, а другим выводом – через резистивную нагрузку, отличающийся тем, что металлическая крышка изолирована от рабочего электрода и соединена с рабочим электродом через емкостную нагрузку.
2. Датчик тока по п.1, отличающийся тем, что резистивная и емкостная нагрузки расположены за пределами рабочего электрода высоковольтной установки или заземленного проводника линии передачи в отдельных экранах.
3. Датчик тока по п.2, отличающийся тем, что резистивная и емкостная нагрузки и дополнительные экраны выполнены с возможностью отсоединения от рабочего электрода высоковольтной установки или заземленного проводника линии передачи.
4. Датчик тока по п.1, отличающийся тем, что резистивная и емкостная нагрузки подключены к одному регистратору двумя кабелями одинаковой марки и длины или одним дифференциальным кабелем.
5. Датчик тока по п.1, отличающийся тем, что он выполнен в виде отдельного измерительного модуля, установленного между коммутатором и нагрузкой высоковольтной установки или в рассечку линии передачи.
РИСУНКИ
|