|
(21), (22) Заявка: 2008104183/28, 07.02.2008
(24) Дата начала отсчета срока действия патента:
07.02.2008
(46) Опубликовано: 27.10.2009
(56) Список документов, цитированных в отчете о поиске:
RU 2006808 C1, 30.01.1994. RU 2103666 С1, 27.01.1998. RU 2172937 С1, 27.08.2001.
Адрес для переписки:
141091, Московская обл., г. Юбилейный, ул. М.К. Тихонравова, 27, НИИ космических систем-филиал ГКНПЦ им. М.В. Хруничева, В.И. Кривоцюку
|
(72) Автор(ы):
Кривоцюк Виктор Иванович (RU), Меньшиков Валерий Александрович (RU), Пушкарский Сергей Васильевич (RU), Пшеняник Владимир Георгиевич (RU), Щеренко Дмитрий Александрович (RU)
(73) Патентообладатель(и):
Кривоцюк Виктор Иванович (RU)
|
(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ЛОБОВОГО СОПРОТИВЛЕНИЯ ИССЛЕДУЕМОГО ТЕЛА В РАЗРЕЖЕННОЙ СРЕДЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
(57) Реферат:
Изобретения относятся к области экспериментальной газоаэродинамики и могут быть использованы для определения коэффициента лобового сопротивления исследуемого тела в разреженной среде. Способ заключается во введении в газовую среду исследуемого тела, механической связью объединенного с первым эталонным телом в одно целое, и измерении силы взаимодействия между указанными телами. При этом в газовую среду дополнительно вводят второе эталонное тело, второй механической связью, коллинеарной первой, объединяют в одно целое с исследуемым телом и первым эталонным телом. Далее определяют силу взаимодействия между вторым эталонным телом и исследуемым телом и на основании измеренных сил взаимодействия между исследуемым телом с первым и вторым эталонными телами определяют коэффициент лобового сопротивления исследуемого тела. Устройство содержит газовую среду для введения в нее исследуемого тела, первое эталонное тело, связанное с исследуемым телом механической связью, второе эталонное тело, связанное второй механической связью с исследуемым телом, первый измеритель силы, возникающей в первой механической связи, второй измеритель силы, возникающей во второй механической связи, арретир и вычислительное устройство. При этом первое и второе эталонные тела выполнены в виде плоских пластин, имеющих одинаковое покрытие или степень обработки поверхности. Технический результат заключается в повышении точности и исключении необходимости измерения ускорений торможения тел, лежащих в диапазоне малых и сверхмалых величин. 2 н. и 2 з.п. ф-лы, 3 ил.
Изобретение относится к области экспериментальной газоаэродинамики и может быть использовано для определения коэффициента лобового сопротивления исследуемого тела в разреженной среде.
Известен способ определения коэффициента лобового сопротивления твердого тела путем его продувки в аэродинамической трубе, авторское свидетельство СССР 377660, кл. G01М 9/00, 1973 г.
Недостатком данного способа является ограниченная возможность проведения продувок исследуемых тел в свободномолекулярном потоке газовой среды, так как само создание наземных аэродинамических установок, воссоздающих свободномолекулярное обтекание исследуемых объектов, представляет собой чрезвычайно сложную научно-техническую проблему, практически неразрешимую на современном этапе развития науки и техники.
Наиболее близким по технической сущности к заявляемому изобретению и выбранному в качестве прототипа является способ определения коэффициента лобового сопротивления исследуемого тела, заключающийся во введении в газовую среду исследуемого тела, механической связью объединенного с эталонным телом, выполненным в виде пластины, спрофилированной по участку сопряженной с ней поверхности исследуемого тела, измерении силы взаимодействия между телами, измерении ускорения торможения системы из двух тел вдоль механической связи между ними и определении по результатам этих измерений искомого коэффициента лобового сопротивления исследуемого тела, патент РФ 2006808, кл. 5 G01М 9/00, 1994 г.
Недостатком прототипа является сравнительно низкая точность и сложность в технической реализации, связанная с необходимостью измерять ускорения торможения исследуемых тел, лежащие в диапазоне малых и сверхмалых величин (10-6-10-9 м/с2 и менее). В таблице 1, для примера, приведены материалы расчетных оценок по диапазонам возможного изменения величин ускорений торможения и величин сил в механической связи в зависимости от высоты круговой орбиты низкоорбитального космического аппарата (КА) для случая, когда исследуемое тело – КА – имеет массу 5000 кг и площадь характеристического сечения 5 м2, а эталонное тело выбирается массой 5 кг и площадью характеристического сечения 2 м. Эти оценки получены с использованием данных динамической модели атмосферы, определяемой ГОСТ 22721-77 для минимума и максимума солнечной активности.
Таблица 1 |
Диапазоны возможного изменения величин ускорений торможения и сил в механической связи в зависимости от высоты орбиты КА |
Высота орбиты КА, км |
Диапазон возможного изменения величины ускорения торможения КА, м/с2 |
Диапазон возможного изменения величины силы в связи, млН |
180 |
(2,24,5)·10-5 |
31.3564.13 |
200 |
(9,825)·10-6 |
13,9635,63 |
300 |
(3,427)·10-7 |
4,8538,48 |
400 |
(2,346)·10-8 |
0,326,56 |
500 |
(2,212)·10-9 |
0,030,17 |
Из данных таблицы 1 следует, что приведенные в ней величины силы в механической связи вполне доступны для измерения существующими техническими средствами с погрешностями не хуже 0,10,5%. В то же время измерение ускорений, лежащих в диапазоне малых и сверхмалых величин, при современном уровне развития измерительной техники этой физической величины, представляется крайне сложной научно-технической задачей. По крайней мере, на сегодняшний день отечественных средств измерения такого класса практически нет, в том числе из-за отсутствия развитой системы метрологического обеспечения такой физической величины, как ускорение для диапазона малых и сверхмалых величин (научно-технический отчет «Теоретическое обоснование и исследование сейсмоинвариантных методов поверки и градуировки микроакселерометров для космических аппаратов в наземных условиях», НИР «Комплекс – М», НИИ космических систем – филиал ГКНПЦ им. М.В.Хруничева, г.Юбилейный Московской области, 2007).
Целью настоящего изобретения является повышение точности и исключение необходимости измерения ускорений торможения тел, лежащих в диапазоне малых и сверхмалых величин. Поставленная цель достигается тем, что в газовую среду вводят второе эталонное тело, второй механической связью, коллинеарной первой, объединенное в одно целое с исследуемым телом и первым эталонным телом, и дополнительно определяют силу взаимодействия между вторым эталонным телом и исследуемым телом.
На фиг.1 представлено устройство, реализующее способ.
Оно содержит исследуемое тело 1, первое эталонное тело 2, второе эталонное тело 3, первую механическую связь 4 между первым эталонным телом 2 и исследуемым телом 1, вторую механическую связь 5 между вторым эталонным телом 3 и исследуемым телом 1, первый измеритель 6 силы, возникающей в первой механической связи 4, второй измеритель 7 силы, возникающей во второй механической связи 5, вычислительное устройство 8, арретир 9, шахту невесомости 10, улавливатель 11.
Механические связи 4 и 5, строго коллинеарные между собой и относительно оси исследуемого тела 1, вдоль которой определяется его коэффициент лобового сопротивления. Исследуемое тело 1 и эталонные тела 2 и 3 имеют различные баллистические коэффициенты. Эталонные тела 2 и 3 имеют возможность после разарретирования перемещаться вдоль механических связей 4 и 5. Для повышения точности и обеспечения универсальности устройства по применению эталонные тела 2 и 3 выполняются в виде плоских пластин, как это показано на фиг.2, где обозначения соответствуют обозначениям фиг.1, а сами пластины имеют одинаковое покрытие или степень обработки поверхности.
Для обеспечения статической устойчивости плоских пластин 2 и 3 механические связи 4 и 5 выполняются в виде трех и более жестких измерительных стержней, равномерно и симметрично закрепляемых на стенках каждой плоской пластины 2 и 3, при этом используются измерители сил в количестве, равном числу применяемых измерительных стержней, жестко закрепленные на исследуемом теле 1 (либо корпусе прибора, если способ реализуется в виде автономного измерителя).
Измерители сил 6 и 7, как это показано на фиг.3, содержат подвижную шаровую опору 12, измерительный стержень 13, сравнивающий блок 14, усилитель-регулятор 15, три пары независимых друг от друга и расположенных взаимно-ортогонально электростатических детекторов 16, содержащих силовые и детектирующие электроды. Такое техническое решение по исполнению измерителей сил 6 и 7 исключает непосредственный механический контакт между телами, полностью устраняя силы трения в системах подвеса эталонных тел 2 и 3 относительно исследуемого тела 1, чем способствует повышению точности устройства.
Устройство, реализующее предлагаемый способ, работает следующим образом.
Перед началом испытаний в память вычислительного устройства 8 вводится информация о параметрах эталонных тел и информация о массе и площади характеристического сечения исследуемого тела, определяемые перед испытаниями путем взвешивания и измерения необходимых габаритных размеров.
Через некоторое время после отделения исследуемого тела 1 от верхней крыши шахты невесомости 10, находящейся под заданным разрежением, либо после его выведения путем отстрела с помощью пневмопушки в рабочую часть аэродинамической трубы, воссоздающей свободномолекулярный поток, либо после выведения на модельную полетную трассу арретир 9 по специальной команде, например, от вычислительного устройства 8 разарретирует измерители сил 6 и 7. В режиме свободного падения (полета по инерции) между эталонными телами 2 и 3 и исследуемым телом 1, в силу различия их баллистических коэффициентов, возникают силы взаимодействия (сжатия) F1(t)и F2(t).
Эти силы фиксируются измерителями сил 6 и 7 и сигналы о их величинах поступают в вычислительное устройство 8, в котором определяется искомая характеристика исследуемого тела 1 по алгоритму (научно-технический отчет «Теоретическое обоснование и исследование методов экспериментального определения коэффициентов сопротивления движению объектов в разреженных средах» по Проекту 07-01-13500, финансируемому Российским фондом фундаментальных исследований по Соглашению 07-1185/26 от 22 июня 2007 г., НИИ космических систем – филиал ГКНПЦ им. М.В.Хруничева, г.Юбилейный Московской области, 2007):
где: m0, m1, m2 – массы, h0, h1, h2 – коэффициенты лобового сопротивления, Н0, H1, H2 – площади характеристических сечений исследуемого тела 1, первого 2 и второго 3 эталонных тел соответственно.
После набора необходимой измерительной информации измерители сил 6 и 7 арретируются, а с целью предотвращения разрушения устройства в целом далее задействуется система спасения, например специальный амортизационный улавливатель (для шахты невесомости), сетчатая ловушка (для аэродинамической трубы) или парашютная система (при сходе объекта с орбиты).
Для определения коэффициентов лобового сопротивления исследуемого тела 1 при других углах атаки эксперимент повторяется. При этом ось чувствительности устройства, реализующего заявленный способ, определяемая направлением механических связей 4 и 5, разворачивается на заданный угол путем перемещения прибора по корпусу исследуемого тела.
Формула изобретения
1. Способ определения коэффициента лобового сопротивления исследуемого тела в разреженной среде, заключающийся во введении в газовую среду исследуемого тела, механической связью объединенного с первым эталонным телом в одно целое, измерении силы взаимодействия между указанными телами, отличающийся тем, что в газовую среду вводят второе эталонное тело, второй механической связью, коллинеарной первой, объединяют в одно целое с исследуемым телом и первым эталонным телом, дополнительно измеряют силу взаимодействия между вторым эталонным телом и исследуемым телом и на основании измеренных сил взаимодействия между исследуемым телом с первым и вторым эталонными телами определяют коэффициент лобового сопротивления исследуемого тела.
2. Устройство для определения коэффициента лобового сопротивления исследуемого тела в разреженной среде, содержащее газовую среду для введения в нее исследуемого тела, механической связью связанного с первым эталонным телом в одно целое, арретир и вычислительное устройство, отличающееся тем, что дополнительно содержит второе эталонное тело, связанное второй механической связью, коллинеарной первой, с исследуемым телом, первый измеритель силы, возникающей в первой механической связи, второй измеритель силы, возникающей во второй механической связи, при этом первое и второе эталонные тела выполнены в виде плоских пластин, имеющих одинаковое покрытие или степень обработки поверхности.
3. Устройство по п.2, отличающееся тем, что каждая механическая связь выполнена в виде трех и более жестких измерительных стержней, равномерно и симметрично закрепленных на задних стенках каждого эталонного тела.
4. Устройство по п.3, отличающееся тем, что каждый измеритель силы выполнен в виде подвижной шаровой опоры, закрепленной на конце измерительного стержня, сравнивающего блока, усилителя-регулятора, трех пар независимых друг от друга и расположенных взаимно ортогонально электростатических детекторов, содержащих силовые и детектирующие электроды, удерживающие подвижную шаровую опору в центральном положении относительно корпуса измерителя силы, выходы детектирующих электродов подключены к входам сравнивающего блока, выходы которого подключены к входам усилителя-регулятора, выходы которого подключены к входам силовых электродов.
РИСУНКИ
|
|