Патент на изобретение №2371232
|
||||||||||||||||||||||||||||
(54) СПОСОБ ОЧИСТКИ ВОДНОЙ СРЕДЫ ОТ НЕФТЕ- И МАСЛОПРОДУКТОВ
(57) Реферат:
Изобретение относится к способу очистки воды и водно-маслянных эмульсий от примесей нефте- и маслопродуктов перед сбросом технологических водных сред в окружающую среду или их подачей на оборотное водоснабжение и может использоваться в нефтеперерабатывающей, химической и пищевой промышленности, на специализированных водоочистных комплексах. Способ заключается в том, что вначале поток очищаемой воды подвергают контакту с магнитным порошком. Затем поток очищаемой воды, содержащей магнитный порошок, обрабатывают переменным электромагнитным полем с последующим разделением полученной при этом суспензии на очищенную воду и магнитный порошок. Обработку переменным электромагнитным полем осуществляют индуктором соленоидного типа в диапазоне частот от 10 до 1000 Гц при напряженности до 100 КА/м. В качестве магнитного порошка используют феррит бария или гидрофобизированный феррит бария. Предложенный способ позволяет упростить технологию процесса, дает возможность проводить процесс как в периодическом, так и в непрерывном режиме, значительно увеличить скорость очистки при одновременном сохранении низких удельных энергетических и материальных затрат процесса, а также обеспечить высокие степени очистки очищаемой водной среды. 7 з.п. ф-лы.
Изобретение относится к способу очистки воды и водно-маслянных эмульсий от примесей нефте- и маслопродуктов перед сбросом технологических водных сред в окружающую среду или их подачей на оборотное водоснабжение и может использоваться в нефтеперерабатывающей, химической и пищевой промышленности, а также на специализированных водоочистных комплексах. Известны многочисленные способы очистки воды от углеводородных примесей, большая часть которых основана на чисто сорбционных и флотационных эффектах, а также явлениях низкотемпературного окисления хлором, диоксидом хлора или озоном. Так, известен способ очистки вод от органических и биологических загрязнений воздействием на воду диоксида хлора ClO2, полученного в плоско-поляризованном UV-излучении (CN, патент 2007137223). Аналогичную задачу решают с помощью воздействия на очищаемую и дезактивируемую воду озона (JP, патент 2005-246354). Эти способы характеризуются применением дорогостоящих и токсичных веществ – диоксида хлора и озона, а также отсутствием полноты очистки водных сред ввиду образования из нефте- и маслопродуктов при их окислении кислородсодержащих соединений, иногда превосходящих по токсичности углеводороды. Способы, основанные на явлениях флотации, требуют использования относительно большого расхода коагулянтов (Al2(SO4)3, Fe2(SO4)3 и т.д.) и не позволяют достигать степеней очистки воды менее 1-0,5 мг/л. Такие процессы могут быть использованы только на стадиях предварительного извлечения нефте- и маслопродуктов из водных сред, или при очень высоких степенях их загрязненности. Так, известен способ очистки сточных вод скотобоен и мясокомбинатов, включающий обработку коагулянтом с последующей флотацией (RU, патент 2075452). Согласно этому способу, очищаемую водную среду последовательно подвергают вначале механической очистке от грубых примесей, затем обработке в жироуловителе, флотации, биологической очистке и на заключительной стадии подвергают обработке импульсными электромагнитными полями. Способ характеризуется невысокой степенью очистки от органических примесей и полным отсутствием очистки от растворимых органических соединений. Наиболее эффективные и востребованные в промышленности методы очистки воды от нефте- и маслопродуктов основаны на явлениях сорбции углеводородных компонентов органическими или углеродсодержащими сорбентами. Такие методы позволяют достигать максимальных степеней очистки, приближающихся к ПДК (0,05 мг/л) по углеводородным примесям, однако характеризуются использованием относительно дорогостоящих сорбентов, невысокими скоростями процессов, наличием стадий регенерации и перезагрузки сорбентов, отсутствием непрерывности процесса. Так, существует сорбционный способ очистки воды от органических и неорганических примесей (RU, патент 2077493). Способ отличается использованием двухслойной сорбционной системы. Первый слой состоит из анионообменной смолы в бикарбонатной форме, модифицированной ионами меди, а второй слой из модифицированного ионами серебра активированного угля. Благодаря использованию такой комбинированной сорбционной системы достигается эффективная очистка не только от углеводородных, а также высокомолекулярных кислород-, азот- и серосодержащих компонентов, но и от сероводорода, нитратов и других растворимых токсичных соединений. Недостатками способа является сложность и высокая стоимость изготовления такой сорбционной системы, отсутствие возможности регенерации сорбционной активности, невысокая емкость по некоторым токсичным компонентам, а также отсутствие возможности длительной непрерывной эксплуатации. Существует способ очистки воды от вредных и токсичных компонентов, главным образом с гидрофобными свойствами (USA, патент 5904854). Способ характеризуется использованием специально разработанных фильтров «Аквафор», основными компонентами которого являются активированное углеродное волокно – «Аквален» и высококачествееный активированный уголь, полученные обработкой плодов кокоса. Такие фильтры характеризуются высокой сорбционной емкостью по большинству гидрофобных токсичных компонентов. Недостатками способа являются все типичные недостатки углеродсодержащих сорбционных систем: относительно высокая стоимость сорбентов, сложность регенерации, отсутствие возможности длительной непрерывной работы, полная неэффективность в отношении низкомолекулярных гидрофильных компонентов. Все это ограничивает использование таких фильтров в пределах бытового сектора. Низкими скоростями и степенями очистки характеризуются также практически все способы биоочистки водных сред с применением различных биофильтров. Эти способы эффективны как в отношении растворимых, так и нерастворимых органических соединений. Причем в отношении растворимых значительно более эффективны. Диапазон применения таких способов ограничивается очисткой водных сред от биотрансформируемых и нетоксичных для используемых кланов бактерий соединений. Так, существует способ очистки от нефтяных загрязнений воды и почвы (RU, патент 2076150) с использованием новых бактериальных штаммов – Acinetobacter species (bicoccum) Arthrobacter species, Rhodococcus sp. Способ подразумевает внесение бактериальной культуры в загрязнение, где в качестве культур используются указанные штаммы, взятые индивидуально или в любом сочетании друг с другом при массовом соотношении бактериальной культуры к нефтяному загрязнению, равном 1:10 – 105 соответственно. Способ отличает высокая степень очистки. К недостаткам способа можно отнести невысокую скорость процессов и ограниченность температурного диапазона жизнеспособности бактериальных кланов. Существует также способ очистки воды от отходов производства пальмового масла (RU, патент 2161415) с использованием бактериального штамма Acinetobacter baumanni M-1, где в качестве побочного продукта очистки получается белковый кормоконцентрат и компост. Способ отличает комплексный подход к проблеме переработки промышленных отходов, полнота и глубина очистки, а также рыночная привлекательность. К недостаткам можно отнести низкую скорость процессов и узость температурных диапазонов эффективной работы бактериальных штаммов. Существуют способы очистки воды с помощью воздействия на нее электромагнитного поля. Так, известен способ очистки морской воды обработкой ее электромагнитным полем, создаваемым постоянным магнитом, взаимодействующим с электрическим полем проводника. Под действием сил электромагнитного поля на поток морской воды происходит сепарация маслопродуктов и водной фазы (CN, патент 1796296). В число недостатков способа входит некомплексность и неполнота очистки от масел. Также (JP, патент 2004-286731) описан способ очистки сточных вод от масляных загрязнений. Согласно этому изобретению на поток загрязненной воды воздействуют переменным электромагнитным полем в диапазоне от 20 Гц до 1 кГц. Отмечена эффективность и простота описанного способа в процессе водоочистки. Указанный способ неэффективен в отношении низкомолекулярных и хорошо растворимых в воде соединений, а также имеет невысокую скорость очистки. Известен также (RU, патент 2319670) способ комплексной очистки сточных вод промышленно-бытового сектора от неорганических и органических примесей до уровня ПДК для водоемов. Способ характеризуется наличием стадий активации и фильтрации очищаемых водных сред под действием электромагнитных полей с использованием на стадии фильтрации магнитного порошка, а также возможностью регенерации фильтра от примесей. Известный способ является технологически сложным ввиду его многостадийности. Кроме этого, предлагаемый способ не дает возможности проведения процесса в непрерывном режиме за счет временной разобщенности процессов активации загрязненной воды, фильтрации активированной воды и регенерации фильтров. Задачей настоящего изобретения является создание эффективного способа очистки водной среды от нефте- и маслопродуктов перед сбросом ее в окружающую среду или подачей в системы оборотного водоснабжения, позволяющего упростить технологический процесс и проводить его как в периодическом, так и в непрерывном режиме при сохранении высокой степени очистки и низких удельных энергетических и материальных затратах процесса. Поставленная задача достигается предложенным способом очистки водной среды от нефте- и маслопродуктов, включающим обработку очищаемой воды переменным электромагнитным полем и использование намагниченного до насыщения магнитного порошка, отличительной особенностью которого является то, что вначале поток очищаемой воды непосредственно подвергают контакту с магнитным порошком, затем поток очищаемой воды, содержащий магнитный порошок, обрабатывают переменным электромагнитным полем в диапазоне частот 10-1000 Гц и напряженности до 100 кА/м с последующим разделением полученной при этом суспензии на очищенную воду и магнитный порошок. Для генерирования электромагнитных полей обычно используют индуктор соленоидного типа, способного генерировать синусоидальные переменные электромагнитные поля. В качестве магнитного порошка можно использовать любой намагниченный до насыщения порошок, например, феррит бария. Предпочтительно используют гидрофобизированный феррит бария, обладающий за счет модификации гидрофобными компонентами повышенным сродством к углеводородам и другим гидрофобным компонентами водной среды. Процесс очистки преимущественно ведут при массовом соотношении магнитного порошка к воде в интервале 1:(1-10) соответственно. Очистку водной среды от нефте- и маслопродуктов проводят под воздействием переменного электромагнитного поля на поток очищаемой воды, смешанной с намагниченным до насыщения магнитным порошком, например, гидрофобизированным порошком феррита бария. Процесс очистки преимущественно ведут при температуре не выше 50°С и давление в реакционной камере не более 10 ати. Процесс можно проводить как в непрерывном, так и периодическом режиме. При проведении процесса в непрерывном режиме удельная скорость подачи очищаемой воды составляет не более 10 м3/ч на один литр реакционного объема реактора электромагнитной обработки (РЭМО) при исходной концентрации нефте- и маслопродуктов не более 100 мг/л. Проведение процесса в непрерывном режиме более технологично в промышленном масштабе в связи с отсутствием стадий переключения режимов, стабильностью параметров, расширенной возможностью автоматизации и регулирования процесса, минимизацией ручного труда. В общем виде процесс очистки водной среды от нефте- и маслопродуктов осуществляют следующим образом. Намагниченный до насыщения гидрофобизированный порошок феррита бария с помощью шестеренчатого насоса подают в реактор электромагнитной обработки (РЭМО) водной среды. Одновременно в РЭМО с помощью центробежного насоса подают воду, загрязненную нефте- или/и маслопродуктами. После этого включают индуктор электромагнитного поля аппарата РЭМО, способного генерировать электромагнитные поля в диапазоне частот 10-1000 Гц и напряженностью электромагнитного поля до 100 кА/м, в зависимости от значений индуктивности, емкости, внутренних токов и частот электромагнитных колебаний. Под воздействием электромагнитных полей, создаваемых индуктором, в РЭМО происходят интенсивные процессы перемешивания и гомогенизации порошка феррита бария с очищаемой водной средой, сопровождающиеся процессами коалесценции мицелл нефтепродуктов и масел, приводящих к укрупнению их размеров. Образующиеся мицеллы активно сорбируются частицами гидрофобизированного феррита бария. Частицы гидрофобизированного феррита бария, помимо мицелл, также активно сорбируют нефтепродукты и масла в растворенном состоянии ввиду привитой к ним функции гидрофобности. Из РЭМО полученную смесь направляют в фильтр-сепаратор ФС любого приемлемого типа, обеспечивающего разделение загрязненного порошка феррита бария и очищенной воды. После ФС очищенную от нефте- маслопродуктов до приемлемого уровня (не более 1 мг/л) воду направляют либо на оборотные производственные нужды, либо на сброс в окружающую среду. Загрязненный порошок феррита бария делят на два потока, один из которых направляют на рециркуляцию в РЭМО, а второй на регенерацию любым доступным способом извлечения нефте- и маслопродуктов и далее также возвращают на рециркуляцию в РЭМО. Ниже приведены предпочтительные условия проведения процесса и его характеристики:
ОПИСАНИЕ КОНКРЕТНЫХ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ СПОСОБА. ПРИМЕР 1 В реактор электромагнитной очистки РЭМО с помощью центробежного насоса подают воду со скоростью 36 м3/ч с температурой 35°С, загрязненную нефтепродуктами с содержанием 5 мг/л. Объем реакционной камеры – 30 л. Таким образом, удельная производительность по воде составляет 1,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 2 ати. Одновременно в РЭМО с помощью шестеренчатого насоса подают намагниченный до насыщения, гидрофобизированный порошок феррита бария. Потоки загрязненной нефтепродуктами воды и порошок феррита бария смешиваются на входе в РЭМО. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц. Расход феррита бария поддерживают на уровне 0,74 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:5. После РЭМО полученную суспензию направляют в фильтр-сепаратор, в котором ее разделяют на потоки влажного, загрязненного порошка феррита бария, и очищенной воды. Порошок феррита бария направляют на регенерацию, очищенную воду на слив, или оборотные нужды. Время проведения процесса 12 часов. Содержание нефтепродуктов в очищенной воде – 0.32 мг/л. Средние энергозатраты составляют 3 кВт×ч/ч. ПРИМЕР 2 Процесс проводят аналогично примеру 1, но время проведения процесса составляет 24 часа. Содержание нефтепродуктов в очищенной воде – 0,15 мг/л. Средние энергозатраты составляют 3,1 кВт×ч/ч. ПРИМЕР 3 Процесс проводят аналогично примеру 1, но время проведения процесса составляет 36 часов. Содержание нефтепродуктов в очищенной воде – 0,11 мг/л. Средние энергозатраты составляют 3,1 кВт×ч/ч. ПРИМЕР 4 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 300 м3/ч с температурой 35°С, содержании нефтепродуктов 5 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 10 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 4 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 50 Гц. Расход феррита бария поддерживают на уровне 4,2 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:10. Время проведения процесса 6 часов. Содержание нефтепродуктов в очищенной воде – 0,93 мг/л. Средние энергозатраты составляют 4,4 кВт×ч/ч. ПРИМЕР 5 Процесс проводят аналогично примеру 4, но время проведения процесса составляет 12 часов. Содержание нефтепродуктов в очищенной воде- 0,91 мг/л. Средние энергозатраты составляют 4,7 кВт×ч/ч. ПРИМЕР 6 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 30 м3/ч с температурой 35°С, содержании нефтепродуктов 100 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 1 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 10 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 50 Гц. Расход феррита бария поддерживают на уровне 9,3 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:1. Время проведения процесса 5 часов. Содержание нефтепродуктов в очищенной воде – 0,89 мг/л. Средние энергозатраты составляют 5,1 кВт×ч/ч. ПРИМЕР 7 Процесс проводят аналогично примеру 6, но время проведения процесса составляет 8 часов. Содержание нефтепродуктов в очищенной воде – 0,85 мг/л. Средние энергозатраты составляют 5,0 кВт×ч/ч. ПРИМЕР 8 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 36 м3/ч с температурой 50°С, содержании нефтепродуктов 5 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 1,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 2 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 50 Гц. Расход феррита бария поддерживают на уровне 4,4 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:5. Время проведения процесса 12 часов. Содержание нефтепродуктов в очищенной воде – 0,69 мг/л. Средние энергозатраты составляют 2,9 кВт×ч/ч. ПРИМЕР 9 Процесс проводят аналогично примеру 8, но время проведения процесса составляет 36 часов. Содержание нефтепродуктов в очищенной воде – 0,65 мг/л. Средние энергозатраты составляют 3,2 кВт×ч/ч. ПРИМЕР 10 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 36 м3/ч с температурой 20°С, содержании нефтепродуктов 5 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 1,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 2 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 50 Гц. Расход феррита бария поддерживают на уровне 4,2 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:5. Время проведения процесса 5 часов. Содержание нефтепродуктов в очищенной воде – 0,22 мг/л. Средние энергозатраты составляют 3,1 кВт×ч/ч. ПРИМЕР 11 Процесс проводят аналогично примеру 10, но время проведения процесса составляет 10 часов. Содержание нефтепродуктов в очищенной воде – 0,20 мг/л. Средние энергозатраты составляют 3,1 кВт×ч/ч. ПРИМЕР 12 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 36 м3/ч с температурой 20°С, содержании нефтепродуктов 5 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 1,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 2 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 10 Гц. Расход феррита бария поддерживают на уровне 4,2 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:5. Время проведения процесса 5 часов. Содержание нефтепродуктов в очищенной воде – 0,42 мг/л. Средние энергозатраты составляют 2,2 кВт×ч/ч. ПРИМЕР 13 Процесс проводят аналогично примеру 12, но время проведения процесса составляет 10 часов. Содержание нефтепродуктов в очищенной воде – 0.38 мг/л. Средние энергозатраты составляют 2,2 кВт×ч/ч. ПРИМЕР 14 Процесс проводят аналогично примеру 12, но время проведения процесса составляет 15 часов. Содержание нефтепродуктов в очищенной воде – 0,35 мг/л. Средние энергозатраты составляют 2,4 кВт×ч/ч. ПРИМЕР 15 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 36 м3/ч с температурой 20°С, содержании нефтепродуктов 5 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 1,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 2 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 1000 Гц. Расход феррита бария поддерживают на уровне 4,2 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:5. Расход феррита бария поддерживают на уровне 4,2 кг/ч, а степень заполнения ферритом бария рабочего пространства РЭМО на уровне 20%. Время проведения процесса 5 часов. Содержание нефтепродуктов в очищенной воде – 0,27 мг/л. Средние энергозатраты составляют 2,4 кВт×ч/ч. ПРИМЕР 16 Процесс проводят аналогично примеру 15, но время проведения процесса составляет 10 часов. Содержание нефтепродуктов в очищенной воде – 0,27 мг/л. Средние энергозатраты составляют 2,45 кВт×ч/ч. ПРИМЕР 17 Процесс проводят аналогично примеру 1, но при скорости подачи загрязненной нефтепродуктами воды 6 м3/ч с температурой 20°С, содержании нефтепродуктов 5 мг/л. Объем реакционной камеры – 30 л. Удельная производительность по воде составляет 0,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 1,5 ати. Напряжение питания индуктора – 380/220 В. Рабочая частота 50 Гц. Расход феррита бария поддерживают на уровне 4,0 кг/ч, а степень заполнения ферритом бария рабочего пространства РЭМО на уровне 25%. Время проведения процесса 18 часов. Содержание нефтепродуктов в очищенной воде – 0,051 мг/л. Средние энергозатраты составляют 2,7 кВт×ч/ч. ПРИМЕР 18 Процесс проводят аналогично примеру 17, но время проведения процесса составляет 36 часов. Содержание нефтепродуктов в очищенной воде – 0,050 мг/л. Средние энергозатраты составляют 2,71 кВт×ч/ч. ПРИМЕР 19 В реактор электромагнитной очистки РЭМО с помощью центробежного насоса подают воду со скоростью 36 м3/ч с температурой 35°С, загрязненную нефтепродуктами с содержанием 5 мг/л. Объем реакционной камеры – 30 л. Таким образом, удельная производительность по воде составляет 1,2 м3/ч на литр реакционного пространства. Давление в реакционной камере поддерживают на уровне 2 ати. Одновременно в РЭМО с помощью шестеренчатого насоса подают намагниченный до насыщения, гидрофобизированный порошок феррита бария. Потоки загрязненной нефтепродуктами воды и порошок феррита бария смешиваются на входе в РЭМО. После этого на вход индуктора подают напряжение 380/220 В с частотой 50 Гц, при напряженности поля в реакционной зоне 100 кА/м. Расход феррита бария поддерживают на уровне 0,74 кг/ч, а массовое отношение феррита бария к очищаемой воде при подаче в РЭМО составляет феррит бария:вода – 1:5. После РЭМО полученную суспензию направляют в фильтр-сепаратор, в котором ее разделяют на потоки влажного, загрязненного порошка феррита бария, и очищенной воды. Порошок феррита бария направляют на регенерацию, очищенную воду на слив, или оборотные нужды. Время проведения процесса 12 часов. Содержание нефтепродуктов в очищенной воде- 0.32 мг/л. Средние энергозатраты составляют 3 кВт×ч/ч. ПРИМЕР 20 Процесс проводят аналогично примеру 17, но напряжение питания индуктора – 380/220 В, рабочая частота – 50 Гц, напряженность поля в реакционной зоне – 85,5 кА/м, время проведения процесса составляет 36 часов. Содержание нефтепродуктов в очищенной воде- 0,050 мг/л. Средние энергозатраты составляют 2,71 кВт×ч/ч. Таким образом, существенным отличием предлагаемого способа очистки водной среды от нефте- и маслопродуктов от известного заключается в том, что обработку очищаемой воды переменным электромагнитным полем проводят в присутствии в воде магнитного порошка. В результате взаимодействия электромагнитных полей переменных напряжений и частот с магнитным порошком происходит разделение водной и гидрофобной фаз. Принцип такого взаимодействия заключается в том, что под действием электромагнитных полей переменных напряжений и частот (10-1000 Гц) с напряженностью поля не более 100 кА/м, генерируемых индуктором соленоидного типа, характеризующихся изменяемыми во времени по синосуидальному закону и продольно-направленными (прямо- и противонаправленными по отношению к потоку очищаемой воды) векторами полей магнитной индукции, происходит их взаимодействие с магнитовосприимчивой насадкой (магнитным порошком например ферритом бария), в результате чего вокруг частиц последней формируются хаотичные вторичные электромагнитные поля, в десятки и сотни раз ускоряющие процессы коалесценции и сорбции мицелл нефте- и маслопродуктов, и приводящее, в конечном итоге, к эквивалентному ускорению разделения водной и гидрофобной фаз. В дальнейшем, проходя стадию отделения от водной среды и регенерацию, магнитный порошок возвращается на стадию очистки, а водная среда с содержанием нефте- и маслопродуктов не более 1,0 мг/л либо используется в качестве оборотной технической воды, либо выбрасывается в окружающую среду. Увеличение напряженности электромагнитных полей выше 100 кА/м нецелесообразно, так как технический результат не улучшается, а затраты электроэнергии возрастают. Технический результат, получаемый при реализации предлагаемого способа очистки водной среды от нефте- и маслопродуктов, состоит в упрощении технологии процесса, так как нет необходимости в предварительной активации очищаемой воды, и в возможности проведения процесса как в периодическом, так и в непрерывном режиме. Проведение процесса в непрерывном режиме более технологично в промышленном масштабе в связи с отсутствием стадий переключения режимов, стабильностью параметров во времени, расширенной возможностью автоматизации и регулирования процесса, минимизацией ручного труда. Преимуществом предлагаемого способа является также увеличение скорости очистки при одновременном сохранении низких удельных энергетических (не более 5,1 кВт×ч/ч при скорости подачи очищаемой воды до 300 м3/ч) и материальных затрат процесса и высокого качества очистки (при исходной концентрации нефтепродуктов н/б 100 мг/л конечная концентрация нефтепродуктов составляет от 1 до 0,05 мг/л), достигающей ПДК для водоемов природоохранных зон (0,05 мг/л).
Формула изобретения
1. Способ очистки водной среды от нефте- и маслопродуктов, включающий обработку очищаемой воды переменным электромагнитным полем и использование намагниченного до насыщения магнитного порошка, отличающийся тем, что вначале поток очищаемой воды непосредственно подвергают контакту с магнитным порошком, затем поток очищаемой воды, содержащей магнитный порошок, обрабатывают переменным электромагнитным полем в диапазоне частот от 10 до 1000 Гц при напряженности до 100 кА/м с последующим разделением полученной при этом суспензии на очищенную воду и магнитный порошок. 2. Способ по п.1, отличающийся тем, что в качестве магнитного порошка используют феррит бария. 3. Способ по п.2, отличающийся тем, что используют гидрофобизированный феррит бария. 4. Способ по любому из пп.1-3, отличающийся тем, что процесс очистки ведут при массовом соотношении магнитного порошка к воде, равным 1:(1-10). 5. Способ по п.1, отличающийся тем, что обработку переменным электромагнитным полем осуществляют индуктором соленоидного типа. 6. Способ по п.1, отличающийся тем, что процесс очистки ведут при температуре не выше 50°С и давлении не более 10 ати. 7. Способ по п.1, отличающийся тем, что процесс очистки ведут в непрерывном режиме. 8. Способ по п.1, отличающийся тем, что процесс очистки ведут при удельной скорости подачи очищаемой воды не выше 10 м3/ч на один литр реакционного объема.
TK4A – Поправки к публикациям сведений об изобретениях в бюллетенях “Изобретения (заявки и патенты)” и “Изобретения. Полезные модели”
Напечатано: (73) , Учреждение Российской академии наук Институт органической химии Н.Д.Зелинского (RU)
Следует читать: (73) , Учреждение Российской академии наук Институт органической химии им. Н.Д. Зелинского РАН (RU)
Номер и год публикации бюллетеня: 30-2009
Код раздела: FG4A
Извещение опубликовано: 27.12.2009 БИ: 36/2009
|
||||||||||||||||||||||||||||