Патент на изобретение №2369662

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2369662 (13) C2
(51) МПК

C22F1/18 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 18.08.2010 – действует

(21), (22) Заявка: 2007143894/02, 28.11.2007

(24) Дата начала отсчета срока действия патента:

28.11.2007

(43) Дата публикации заявки: 10.06.2009

(46) Опубликовано: 10.10.2009

(56) Список документов, цитированных в отчете о
поиске:
RU 2219280 С2, 20.12.2003. SU 1039243 А1, 27.08.2004. SU 1019007 А, 23.05.1983. US 5399212 А, 21.03.1995. JP 63-179054 А, 23.07.1988. DE 69823142 Т2, 24.03.2005.

Адрес для переписки:

105005, Москва, ул. Радио, 17, ФГУП “ВИАМ”

(72) Автор(ы):

Каблов Евгений Николаевич (RU),
Хорев Анатолий Иванович (RU),
Ночовная Надежда Алексеевна (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Всероссийский научно-исследовательский институт авиационных материалов” (ФГУП “ВИАМ”) (RU)

(54) СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ТИТАНОВЫХ СПЛАВОВ

(57) Реферат:

Изобретение относится к цветной металлургии и может быть использовано в авиакосмической и ракетной технике для создания деталей и узлов шасси самолетов и стыковочных узлов ракет, работающих в условиях циклических нагрузок. Технической задачей изобретения является повышение малоцикловой усталости (МЦУ), определяемой числом циклов (N) до разрушения при коэффициентах концентрации Kt=4,0 (rн=0,1 мм) и Kt=2,2 (rн=0,75 мм). Обработку титановых сплавов проводят в одиннадцать стадий с нагревом до температуры выше и ниже температуры полиморфного превращения и деформацией. На стадиях с первой по третью деформацию проводят в четыре этапа при охлаждении сплава и с изменением направления деформации на 90° при чередовании осадки и вытяжки. На стадиях с четвертой по восьмую деформацию проводят в один этап с изменением направления деформации на 90°С от двух до четырех раз. На одиннадцатой стадии проводят нагрев с выдержкой от 2 до 10 часов. Изобретение позволит повысить ресурс и надежность деталей и узлов летательных аппаратов. 1 табл.

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке титановых сплавов, и может быть использовано в авиакосмической и ракетной технике для создания деталей и узлов шасси самолетов и стыковочных узлов ракет, работающих в условиях циклических нагрузок.

Известен способ термомеханической обработки титановых сплавов, включающий:

– нагрев до температуры (1050-1200)°С (Тпп+120÷Тпп+270)°С, деформацию в процессе охлаждения до 850°С (Тпп-80)°С;

– нагрев до температуры (880-1050)°С (Тпп-50÷Тпп+120)°С, охлаждение в процессе деформации до температуры 750°С (Тпп-180)°С, где Тпп=920°С (Александров В.К., Аношкин Н.Ф., Белозеров А.П. «Полуфабрикаты из титановых сплавов. М., ОНТИ ВИЛС, 1996 г., с.371).

Известен также способ термомеханической обработки, применяемый при изготовлении изделий из титановых сплавов включающий нагрев в -область выше температуры полиморфного превращения, деформацию в процессе охлаждения до температуры на 30-70°С ниже температуры полиморфного превращения, охлаждение, повторный нагрев в двухфазной области, повторную деформацию в этой области в процессе охлаждения, повторное охлаждение, окончательный нагрев в двухфазную область, выдержку и охлаждение, отличающийся тем, что с целью повышения механических свойств деформацию проводят в – и (+)-областях с одинаковой степенью 40-60%, повторный нагрев осуществляют до температуры на 20-40°С ниже температуры полиморфного превращения, повторную деформацию проводят со степенью 25-35% при охлаждении до температуры на 100-130°С ниже температуры полиморфного превращения, повторное охлаждение после деформации осуществляют до температуры на 180-280°С ниже температуры полиморфного превращения, после чего дополнительно повторяют последний цикл нагрева и деформации в процессе охлаждения в тех же условиях, а охлаждение после деформации в этом цикле проводят до комнатной температуры, окончательный нагрев осуществляют до температуры на 100-300°С ниже температуры полиморфного превращения (а.с. СССР 1740487).

Недостатком способа является низкий уровень циклической прочности титановых сплавов.

Наиболее близким аналогом, взятым за прототип является способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше и ниже температуры полиморфного превращения и деформацию в процессе охлаждения до температуры ниже температуры полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в шесть стадий, при этом на первых пяти стадиях осуществляют:

– нагрев до температуры (Тпп+120÷Тпп+270)°С, деформацию со степенью 50-70% при охлаждении до (Тпп-40÷Тпп-100)°С;

– нагрев до температуры (Тпп+60÷Тпп+160)°С, деформацию со степенью 40-60% при охлаждении до (Тпп-100÷Тпп-180)°С;

– нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью 10-30% при охлаждении до (Тпп-140÷Тпп-160)°С;

– нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью 40-60% при охлаждении до (Тпп-110÷Тпп-130)°С;

– нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью 30-70% при охлаждении до (Тпп-110÷Тпп-130)°С;

затем на шестой стадии проводят нагрев до температуры (Тпп-400÷Тпп-500)°С с выдержкой в течение 5-20 часов, где Тпп – температура полного полиморфного превращения (патент РФ 2219280).

Сплав, обработанный этим способом, имеет пониженные значения малоцикловой усталости при различных концентраторах напряжения.

Технической задачей изобретения является повышение малоцикловой усталости (МЦУ), определяемой числом циклов (N) до разрушения при коэффициентах концентрации Kt=4,0 (rн=0,1 мм) и Kt=2,2 (rн=0,75 мм).

Поставленная техническая задача достигается тем, что предложен способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, в котором термомеханическую обработку проводят в одиннадцать стадий, при этом:

на первой стадии осуществляют нагрев до температуры (Тпп+290÷Тпп+370)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+100÷Тпп-70)°С с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе;

на второй стадии – нагрев до температуры (Тпп+180÷Тпп+270)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+50÷Тпп-90)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе;

на третьей стадии – нагрев до температуры (Тпп+80÷Тпп+170)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-30÷Тпп-200)°C с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 20÷50% на каждом этапе;

на четвертой стадии – нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью 15-60%;

на пятой стадии – нагрев до температуры (Тпп+30÷Тпп+60)°С, деформацию со степенью 30-60%;

на шестой стадии – нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью 20-40% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°С;

на седьмой стадии – нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью 30-60% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°C;

на восьмой стадии – нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью 20-60% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°С;

на девятой стадии – нагрев до температуры (Тпп+80÷Тпп+150)°С, деформацию при прокатке со степенью 40-70%;

на десятой стадии – нагрев до температуры (Тпп-20÷Тпп-50)°С, деформацию при прокатке со степенью 30-60%;

затем на одиннадцатой стадии проводят нагрев до температуры (Тпп-320÷Тпп-520)°С с выдержкой 2-10 часов, где Тпп – температура полиморфного превращения;

при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформирования на 90° от двух до четырех раз.

На первых трех стадиях проводится всесторонняя деформация после нагревов в -области, что обеспечивает получение однородной по химическому составу, макро- и микроструктуры заготовки (сляба). Понижение температуры начала и конца деформации при каждой последующей стадии обеспечивает уменьшение величины -зерна и создание сверхмелкозернистой -структуры. Окончание деформации при более низкой температуре, чем начало деформации, создает горячий наклеп, повышающий дисперсность фазы при последующем нагреве в -области.

При последующих нагревах и деформациях происходит создание однородного структурного и фазового состояния за счет трех фазовых перекристаллизаций, заключающихся в деформации в +-области на четвертой, шестой и восьмой стадиях и нагреве в -области на пятой, седьмой и девятой стадиях. В процессе деформации в +-области более интенсивная деформация проходит в зонах с меньшей величиной зерна, а при нагреве в -области более интенсивно в этих зонах идет процесс рекристаллизации и рост зерен. В других зонах с более крупным зерном деформация идет менее интенсивно и с меньшей скоростью идет процесс рекристаллизации. Таким образом происходит выравнивание структуры. При трех фазовых перекристаллизациях достигается создание однородной сверхмелкозернистой структуры.

Заготовка с такой структурой имеет малую глубину окисления по границам зерен, а следовательно требует меньшей глубины механической обработки поверхности перед прокаткой плит на девятой и десятой стадиях.

Деформация при прокатке на десятой стадии в +-области обеспечивает измельчение внутризеренной структуры и создание прерывистости и зубчатости границ.

При последней одиннадцатой стадии обработки (старении) достигается распад метастабильных фаз и дисперсионное упрочнение.

Выполнение одиннадцати стадий обработки обеспечивает получение повышенных значений малоцикловой усталости при различных концентраторах напряжения.

Примеры осуществления

Были изготовлены образцы из титановых сплавов, например ВТ-23 и ВТ-43, обработанные предлагаемым способом термомеханической обработки (1-3) и способом-прототипом (4), которые были подвергнуты механическим испытаниям.

Пример 1

на первой стадии осуществляют нагрев до температуры (Тпп+290)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+100)°С с изменением направления деформации на 90 при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе;

на второй стадии – нагрев до температуры (Тпп+180)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+50)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе;

на третьей стадии – нагрев до температуры (Тпп+80)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-30)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 20% на каждом этапе;

на четвертой стадии – нагрев до температуры (Тпп-20)°С, деформацию со степенью 15%;

на пятой стадии – нагрев до температуры (Тпп+30)°С, деформацию с изменением направления деформирования на 90° со степенью 30%(первое изменение направления);

на шестой стадии – нагрев до температуры (Тпп-20)°С, деформацию с изменением направления деформирования на 90° со степенью 20% в процессе охлаждения до температуры (Тпп-110)°С (второе изменение направления);

на седьмой стадии – нагрев до температуры (Тпп+20)°С, деформацию со степенью 30% в процессе охлаждения до температуры (Тпп-110)°С;

на восьмой стадии – нагрев до температуры (Тпп-20)°С, деформацию со степенью 20% в процессе охлаждения до температуры (Тпп-110)°С;

на девятой стадии – нагрев до температуры (Тпп+80)°С, деформацию при прокатке со степенью 40%;

на десятой стадии – нагрев до температуры (Тпп-20)°С, деформацию при прокатке со степенью 30%;

затем на одиннадцатой стадии проводят нагрев до температуры (Тпп-320)°С с выдержкой 2 часа, где Тпп – температура полиморфного превращения.

При этом деформация на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформировании на 90 два раза (на 5 и 6 стадиях).

Пример 2

на первой стадии осуществляют нагрев до температуры (Тпп+370)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-70)°С с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 50% на каждом этапе;

на второй стадии – нагрев до температуры (Тпп+270)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-90)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 50% на каждом этапе;

на третьей стадии – нагрев до температуры (Тпп+170)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-200)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 50% на каждом этапе;

на четвертой стадии – нагрев до температуры (Тпп-40)°С, деформацию со степенью 60%;

на пятой стадии – нагрев до температуры (Тпп+60)°С, деформацию с изменением направления деформирования на 90° со степенью 60% (первое изменение);

на шестой стадии – нагрев до температуры (Тпп-40)°С, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-130)°С (второе изменение);

на седьмой стадии – нагрев до температуры (Тпп+50)°С, деформацию с изменением направления деформирования на 90° со степенью 60% в процессе охлаждения до температуры (Тпп-130)°С (третье изменение);

на восьмой стадии – нагрев до температуры (Тпп-40)°С, деформацию со степенью 60% в процессе охлаждения до температуры (Тпп-130)°С;

на девятой стадии – нагрев до температуры (Тпп+150)°С, деформацию при прокатке со степенью 70%;

на десятой стадии – нагрев до температуры (Тпп-50)°С, деформацию при прокатке со степенью 60%;

затем на одиннадцатой стадии проводят нагрев до температуры (Тпп-520)°С с выдержкой 10 часов, где Тпп – температура полиморфного превращения;

При этом деформация на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформировании на 90° три раза (на 5, 6 и 7 стадиях).

Пример 3

на первой стадии осуществляют нагрев до температуры (Тпп+320)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+20)°С с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на второй стадии – нагрев до температуры (Тпп+220)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-20)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на третьей стадии – нагрев до температуры (Тпп+120)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-110)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 30% на каждом этапе;

на четвертой стадии – нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформирования на 90° со степенью 30 (первое изменение);

на пятой стадии – нагрев до температуры (Тпп+45)°С, деформацию с изменением направления деформирования на 90° со степенью 40% (второе изменение);

на шестой стадии – нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформирования на 90° со степенью 30% в процессе охлаждения до температуры (Тпп-120)°С (третье изменение);

на седьмой стадии – нагрев до температуры (Тпп+30)°С, деформацию со степенью 40% в процессе охлаждения до температуры (Тпп-120)°С;

на восьмой стадии – нагрев до температуры (Тпп-30)°С, деформацию с изменением направления деформирования на 90° со степенью 40% в процессе охлаждения до температуры (Тпп-120)°С (четвертое изменение);

на девятой стадии – нагрев до температуры (Тпп+110)°С, деформацию при прокатке со степенью 50%;

на десятой стадии – нагрев до температуры (Тпп-30)°С, деформацию при прокатке со степенью 40%;

затем на одиннадцатой стадии проводят нагрев до температуры (Тпп-420)°С с выдержкой 6 часов, где Тпп – температура полиморфного превращения. При этом деформация на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформировании на 90° четыре раза (на 4, 5, 6 и 8 стадиях).

Предлагаемый способ термомеханической обработки титановых сплавов позволяет на порядок повысить малоцикловую усталость при различных концентраторах напряжения.

Применение предлагаемого способа термомеханической обработки позволит повысить ресурс и надежность деталей и узлов летательных аппаратов.

Таблица
ВТ23 (Тпп=920°С) B=1300 МПа max цикла=600 МПа ВТ43 (Тпп=910°С) В=1400 МПа max цикла=600 МПа
Kt=2,2 (rн=0,75 мм) Kt=4,0 (rн=0,1 мм) Kt=2,2 (rн=0,75 мм) Kt=4,0 (rн=0,1 мм)
1 30000 130000 55000 210000
2 35000 250000 60000 270000
3 32000 170000 57000 240000
4 3000 13000 5000 25000

Формула изобретения

Способ термомеханической обработки титановых сплавов, включающий многократные нагревы до температуры выше или ниже температуры полиморфного превращения и деформации в процессе охлаждения до температуры ниже полиморфного превращения, выдержку и охлаждение, отличающийся тем, что термомеханическую обработку проводят в одиннадцать стадий, при этом на первой стадии осуществляют нагрев до температуры (Тпп+290÷Тпп+370)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+100÷Тпп-70)°С с изменением направления деформации на 90° при чередовании осадки и вытяжки со степенью деформации 20-50% на каждом этапе, на второй стадии – нагрев до температуры (Тпп+180÷Тпп+270)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп+50÷Тпп-90)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 20-50% на каждом этапе, на третьей стадии – нагрев до температуры (Тпп+80÷Тпп+170)°С, деформацию в четыре этапа при охлаждении до температуры (Тпп-30÷Тпп-200)°С с изменением направления деформации на 90°С при чередовании осадки и вытяжки со степенью деформации 20-50% на каждом этапе, на четвертой стадии – нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью 15-60%, на пятой стадии – нагрев до температуры
пп+30÷Тпп+60)°С, деформацию со степенью 30-60%, на шестой стадии – нагрев до температуры (Tпп-20÷Тпп-40)°С, деформацию со степенью 20-40% в процессе охлаждения до температуры (Tпп-110÷Тпп-130)°C, на седьмой стадии – нагрев до температуры (Тпп+20÷Тпп+50)°С, деформацию со степенью 30-60% в процессе охлаждения до температуры (Тпп-110÷Тпп-130)°С, на восьмой стадии – нагрев до температуры (Тпп-20÷Тпп-40)°С, деформацию со степенью 20-60% в процессе охлаждения до температуры (Tпп-110÷Тпп-130)°С, на девятой стадии – нагрев до температуры (Тпп+80÷Тпп+150)°С, деформацию при прокатке со степенью 40-70%, на десятой стадии – нагрев до температуры (Тпп-20÷Тпп-50)°С, деформацию при прокатке со степенью 30-60%, затем на одиннадцатой стадии проводят нагрев до температуры (Тпп-320÷Тпп-520)°С с выдержкой 2-10 часов, где Тпп – температура полиморфного превращения, при этом деформацию на стадиях с четвертой по восьмую осуществляют в один этап с изменением направления деформации на 90° от двух до четырех раз.

Categories: BD_2369000-2369999