Патент на изобретение №2367712
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРНЫХ СПЛАВОВ ТИТАН-НИКЕЛЬ С ЭФФЕКТОМ ПАМЯТИ ФОРМЫ
(57) Реферат:
Изобретение относится к деформационно-термической обработке сплавов с эффектом памяти формы на основе интерметаллического соединения титан-никель и может быть использовано в металлургии, машиностроении и медицине. Изобретение направлено на создание в сплавах регламентированных параметров нанокристаллической структуры с повышенным комплексом механических и функциональных свойств, а также снижение трудоемкости техпроцесса получения полуфабрикатов в виде ленты, проволоки, полосы толщиной менее 2,0 мм. Предварительно закаленный сплав подвергают холодной деформации путем многократной прокатки с обеспечением суммарной истинной степени деформации е
Изобретение относится к области металлургии, а именно к деформационно-термической обработке сплавов с эффектом памяти формы (ЭПФ), в частности сплавов на основе интерметаллического соединения титан-никель, с целью повышения их механических и функциональных свойств. Способ может быть использован при изготовлении преимущественно тонких металлических полуфабрикатов в виде ленты, проволоки, полосы толщиной менее 2,0 мм с формированием нанокристаллической структуры и может быть использован в металлургии, машиностроении и медицине. Известны традиционные подходы регулирования структуры и свойств поликристаллических материалов, в частности металлов и сплавов, путем целенаправленного изменения химического состава и использования способов получения гранульной, порошковой и др. технологией. Например, в способе получения ультрамелкозернистой структуры в металлических материалах используется метод быстрой закалки, в результате которой в сплаве формируется ультрамелкозернистая структура с размером зерен менее 1 мкм [Быстрозакаленные металлические сплавы, под ред. Штиба С., Варлимонта Г., пер. с англ. М., Металлургия, 1989, 376 с.]. Недостатком этой технологии является то, что сплав получается в виде тонких лент или порошков, и требуется введение дополнительной операции компактирования, связанной с решение проблемы сплошности конечного объемного продукта. Использование методов, основанных на применении различных схем деформационно-термической обработки для промышленных конструкционных материалов, позволяет кардинально изменять их физико-механические характеристики. К таким методам в значительной мере относятся способы обработки, включающие интенсивную деформацию сдвигом (В.М. Сегал и др. Процессы пластического структурообразования металлов. Минск, Наука и техника, 1994, с.232), а также различные способы его усовершенствования, например способ деформационной обработки материалов и устройство для его осуществления (Патент РФ Известен способ изготовления сверхупругого сплава никель-титан (JP 6065741, МПК C22F 1/10, опубл. 24.08.94 г., ИСМ, вып.48, Недостатком известных способов в сплавах титан-никель с ЭПФ является низкая технологическая пластичность, что является ограничением для формирования нанокристаллической структуры и соответственно возможности одновременного улучшения их механических (прочностных и пластических) характеристик, а также комплекса служебных и специальных свойств, таких как обратимая деформация, реактивное напряжение, сверхэластичность и демпфирующая способность. Наиболее близким по техническому результату является способ получения ультрамелкозернистых сплавов титан-никель с ЭПФ (Патент РФ Основным недостатком способа является ограничение по минимальному размеру зерен (составляет 230 нм и более), а также сложность техпроцесса формирования однородной ультрамелкозернистой структуры на первом этапе. Для накопления высокой истинной степени деформации (е – необходимость изотермического равноканального углового прессования; – ограничения по температурному интервалу – снижение температуры прессования ниже оптимальной приводит к разрушению образцов из-за низкой технологической пластичности, а использование температуры выше 550°С приводит к интесивному росту зерна и снижению характеристик прочности; – многократность прессования, для достижения ультрамелкозернистой структуры с размером зерна 0,23-0,26 мкм требуется 8-12 проходов; – длина заготовок ограничена геометрическими параметрами межштампового пространства пресса и соответствующей оснастки для прессования; – проведение нескольких циклов прессования приводит к значительному снижению коэффициента использования материала и повышению трудоемкости обработки; – на втором этапе – низкая технологическая пластичность накладывает ограничения на область применения методов обработки металлов давлением. Известен также способ пластификации и снижения сопротивления металла деформированию (Заявка на изобретение РФ F=k·V/ V – скорость движения заготовки;
k – целочисленный коэффициент, k>1. Электропластическое действие импульсного тока приводит к существенному снижению сопротивления материала деформированию. Однако предложенные способы подведения и параметры импульсного тока, например, при электропластической прокатке (ЭПП), имеют определенные ограничения. Частота, плотность и длительность импульсов тока зависят от скорости пластической деформации металла в рабочей зоне ЭПП. Технология ЭПП возможна при низких и средних скоростях прокатки или на тонких заготовках при повышенных скоростях прокатки. В процессе ЭПП тонких исходных заготовок в ленту в очаге деформации происходит многократное изменение механизма деформации от внутризеренного к интенсификации механизма межзеренного проскальзывания и наоборот. Что приводит к более однородному распределению структурных элементов с разными кристаллографическими ориентациями в очаге деформации и соответственно к повышению физико-механических характеристик в конечной продукции. Однако реализация ЭПП как способа получения наноструктуры, а также влияние обусловленной им структуры на функциональные и механические свойства в сплавах титан-никель с ЭПФ ранее были не известны. Наиболее близкий аналог по технологической схеме реализации является способ получения сверхупругого титан-никелевого сплава (JP 58161753, МПК С22F 1/10, опубл. 26.09.1983 г.), включающий предварительную закалку сплава, последующую холодную деформацию прокаткой со степенью деформации В способе-прототипе наиболее существенным недостатком является низкая технологическая пластичность (достигаемая истинная степень деформации е<0,4). Соответственно малая степень измельчения микроструктуры ограничивает возможности в достижении высоких механических и функциональных свойств в сплавах титан-никель с ЭПФ. Задача данного изобретения – способ получения в сплавах титан-никель с ЭПФ регламентированных параметров (величина зерна, степень неоднородности и фазовый состав) нанокристаллической структуры и повышенным, по сравнению с прототипом, комплексом механических и функциональных свойств, а также снижение трудоемкости и упрощения технологии получения полуфабрикатов в виде ленты, проволоки, полосы толщиной менее 2,0 мм. Поставленная задача достигается тем, что в известном способе получения ультрамелкозернистых сплавов титан-никель с ЭПФ включающем предварительную закалку сплава, последующую холодную деформацию прокаткой со степенью деформации При реализации способа используются также приемы, расширяющие его технологические возможности: – при выполнении дробной пластической деформации каждое последующее единичное обжатие выполняют со сменой направления прокатки; – деформирование осуществляют при скоростях прокатки 20-250 мм/сек; – параметры импульсного тока варьируют на каждом этапе деформирования; – деформирование осуществляют с приложением к зоне деформации однополярного импульсного тока; – применяют параметры импульсного тока с частотой 400-1200 Гц, с плотностью тока 60-300 А/мм2 и длительностью импульсов в пределах 40-200 мкс. Предложенный способ обеспечивает получение однородной наноструктуры с размером зерен <100 нм в сплавах титан-никель с ЭПФ за счет высокой накопленной истинной степени деформации, полученной в режиме дробной ЭПП. Способ позволяет получать регламентированные параметры наноструктуры, повышенный комплекс механических и функциональных свойств в широком диапазоне, а также снизить трудоемкость изготовления, значительно повысить качество полуфабрикатов и коэффициент использования материала. При анализе отличительных признаков было выявлено, что заявляемое изобретение не вытекает явным образом из известного уровня техники. Впервые предложено сочетание электропластической деформации с процессом получения накопления дробной суммарной истинной степени деформации е Способ осуществляют следующим образом. Исходную заготовку, в частности полосу из сплава титан-никель, в закаленном состоянии подвергают, например, в прокатном стане с клетью, оснащенной генератором импульсного тока, многократной ЭПП, получая высокую накопленную истинную степень деформации е Параметры однополярного импульсного тока, для формирования определенной микроструктуры при ЭПП, варьируют в следующих интервалах: плотность тока 60-300 А/мм2; частота следования импульсов 400-1200 Гц и длительность импульсов в пределах 40-200 мкс. Эффективность ЭПП на процесс формирования микроструктуры снижается при плотности тока ниже 45 А/мм2,а также при длительности импульса тока менее 30 мкс и более 250 мкс. Пример конкретного выполнения. Исходным материалом является крупнозернистая полоса сечением 2×5 мм из сплава Ti49.3 Ni50.7, после гомогенизации при температуре 800°С в течение 1 часа и закалки в воду. Полосу подвергают дробной прокатке при комнатной температуре в двухвалковом стане, оснащенном генератором импульсного тока, при скорости прокатки 35 мм/с. Единичное обжатие составляет по сечению 5%, при этом каждое последующее обжатие выполняют со сменой направления прокатки и т.д. до конечной толщины 0,2 мм. Параметры импульсного тока, подводимого к зоне пластической деформации, регулируются генератором и составляют: плотность тока 160 А/мм2; частота и длительность следования импульсов 1000 Гц и 80 мкс соответственно. Температура окончательного отжига составляла 450°С, длительность 1,0 час. ЭПП в приведенных режимах позволяет получить следующие результаты: при накопленной истинной степени деформации е=0,7 ЭПП приводит к уменьшению среднего размера зерна до 100 нм, что на два-три порядка меньше по сравнению с прототипом, и в два раза меньше по сравнению с лучшим результатом, достигнутым в способе получения ультрамелкозернистой структуры методом равноканального углового прессования с последующей прокаткой и отжигом (размер зерна составляет 230-260 нм); при степени деформации е при степени деформации более е регламентирование режимов обработки дает возможность контролировать уменьшение размера зерна в пределах 100-30нм, что позволяет управлять пластическими, прочностными характеристиками, а также уровнем функциональных свойств. Способ, например, позволяет повысить прочность Помимо указанных свойств ЭПП в два раза повышает предел усталости и в несколько раз демпфирующую способность, что необходимо для имплантируемых материалов, используемых в медицине. Таким образом, предложенный способ получения нанокристаллических сплавов позволяет существенно повысить уровень механических и функциональных свойств обрабатываемого материала и использовать его в ответственных технических конструкциях и устройствах, в том числе в медицине.
Формула изобретения
1. Способ получения наноструктурного сплава титан-никель с эффектом памяти формы, включающий холодную деформацию сплава многократной прокаткой с обеспечением суммарной истинной степени деформации e 2. Способ по п.1, отличающийся тем, что каждое последующее единичное обжатие при многократной прокатке осуществляют со сменой направления. 3. Способ по п.1, отличающийся тем, что прокатку осуществляют со скоростью 20-250 мм/с. 4. Способ по п.1, отличающийся тем, что параметры импульсного тока варьируют на каждом этапе деформирования. 5. Способ по п.4, отличающийся тем, что используют однополярный импульсный ток.
|
||||||||||||||||||||||||||