Патент на изобретение №2164547
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОВЕРХНОСТНОЙ МОДИФИКАЦИИ ТИТАНОВЫХ СПЛАВОВ
(57) Реферат: Способ поверхностной модификации титановых сплавов включает удаление электрохимическим травлением поверхностного слоя на глубину структурных нарушений, образовавшихся при механической подготовке, удаление путем диффузионного вакуумного отжига растворенного в приповерхностном слое сплава газа с толщины, большей расчетной глубины проплавления под действием мощного импульсного пучка, и облучение поверхности мощным ионным пучком наносекундной длительности. Поверхностный слой удаляют на толщину 4-7 мкм, отжиг проводят в течение 2-2,5 ч при температуре 550-600°С и давлении 5 10-4 – 1 10-5 мм рт. ст., облучение подготовленной поверхности осуществляют мощным ионным пучком состава 30% С+ и 70% Н+ с энергией 200-400 КэВ, плотностью тока 50-150 А/см2, 1-3 импульсами длительностью 30-50 нс. 3 з.п.ф-лы.
Изобретение относится к области радиационно-пучковых технологий модифицирования материалов и может быть использовано при получении конструкционных материалов, обладающих уникальными свойствами, для применения в двигателестроении, в авиационной и химической промышленности. Известен способ обработки инструмента (А.С. СССР N 1441792, МПК 5 C 21 D 1/09, БИ N 18, 1986 г.), включающий облучение по всей рабочей поверхности ионным пучком наносекундной длительности, отличающийся тем, что с целью повышения эксплуатационной стойкости инструмента облучение осуществляют потоком энергии 1-3 Дж/см2, дозой 2,5 1013-1014 см-2 в импульсе.
Известен способ ионно-лучевой обработки инструмента (Патент РФ N 2111264, МПК 6 C 21 D 1/09, БИ N 14, 1998 г.), включающий обработку инструмента мощным ионным пучком наносекундной длительности, отличающийся тем, что инструмент облучают пучком со средней кинетической энергией ионов 104-106 эВ, длительностью 5-1000 нс и с плотностью потока энергии в пучке 0,1-3,0 Дж/см2.
Недостатком данного способа также является формирование микрократеров на поверхности инструмента во время облучения, что может приводить к снижению уровня эксплуатационных свойств обработанных по такому способу изделий (например, возможно инициирование разрушения из кратеров).
Известен способ восстановления эксплуатационных свойств деталей из жаропрочных сплавов (Патент РФ N 2094521, МПК 6 C 22 F 3/00, БИ N 30, 1997 г.), включающий удаление поврежденных при эксплуатации покрытий и очистку поверхности путем ее обработки концентрированным потоком энергии (в диапазоне 0,1-30 Дж/см2) заряженных частиц наносекундной длительности с последующей финишной термообработкой при температуре эксплуатации изделия.
Наиболее близким к заявляемому является способ повышения коррозионной стойкости металлов и сплавов (А.С. СССР N 1486538, МПК 4 C 22 F 3/00, БИ N 22, 1989 г.), заключающийся в облучении ускоренными ионами рабочей поверхности импульсным пучком наносекундной длительности. В этом способе образец помещают в специальный бокс ускорителя при техническом вакууме 10-4 мм рт. ст. , облучают мощным импульсным пучком углерода, водорода или азота с энергией 200 – 500 КэВ, плотностью тока 120-200 А/см2 не менее чем 5 импульсами длительностью 50-100 нс. Недостатком способа, как и в предыдущих случаях, является формирование микрократеров на поверхности облучения, что может привести как к уменьшению усталостной прочности, так и к коррозионному растрескиванию в зоне микрократеров. Поскольку наиболее слабой областью у микрократера является его дно, то наиболее вероятно начало коррозионного растрескивания именно со дна.
Задачей настоящего изобретения является создание способа модификации титановых сплавов, обеспечивающего уменьшение размеров и плотности кратеров на облученной поверхности и приводящего вследствие этого к повышению эффективности модификации титановых сплавов.
Сущность изобретения заключается в том, что в способе модификации титановых сплавов, включающем облучение мощным ионном пучком наносекундной длительности, перед облучением электрохимическим травлением удаляют поверхностный слой на глубину структурных нарушений, образовавшихся при механической подготовке, а затем путем диффузионного вакуумного отжига удаляют растворенный в приповерхностном слое сплава газ с толщины, большей расчетной глубины проплавления под действием мощного импульсного пучка.
В частном случае удаляют поверхностный слой толщиной 4-7 мкм, диффузионный вакуумный отжиг проводят в течение 2-2,5 часов при температуре 550 – 600oC и давлении 5 10-4 – 1 10-5 мм рт.ст., облучение подготовленной поверхности осуществляют мощным ионным пучком состава 30%o C+ и 70% H+ с энергией 200-400 КэВ, плотностью тока 50-150 А/см2, 1-3 импульсами длительностью 30-50 нс.
В результате предварительной подготовки металлов и сплавов, включающей электрохимическое удаление слоя титанового сплава толщиной 4-7 мкм, происходит снятие наклепанного слоя, образовавшегося при механической обработке материала, а также инородных поверхностных включений. Последующий вакуумный отжиг титановых сплавов при температуре -550 – 600oC и давлении 5 10-4 – 1 10-5 мм рт. ст. приводит к удалению растворенных в приповерхностном слое материала газов, прежде всего водорода. Предварительная подготовка, описанная выше, приводит к существенному (до 50 раз) уменьшению плотности образующихся на облучаемой поверхности кратеров, что обеспечивает улучшение эксплутационных свойств титановых сплавов (усталостная прочность, коррозионная стойкость и т.д.).
Указанный технический результат достигается за счет комплексной модификации, включающей предварительное электрохимическое травление, диффузионный вакуумный отжиг и последующую обработку мощным ионным пучком. При этом посредством предварительного электрохимического травления осуществляется удаление слоя материала, имеющего повышенную дефектность, а вакуумный отжиг при температуре 550 – 600oC и давлении 5 10-4 – 1 10-5 мм рт. ст. в течение 2-2,5 часов обеспечивает удаление из приповерхностного слоя растворенных газов. Именно локальные скопления растворенных в титане газов, прежде всего водорода, из-за его высокой подвижности приводят при его выходе на свободную расплавленную мощным импульсным пучком поверхность к образованию кратеров.
Уменьшение плотности кратеров достигается за счет снижения концентрации газов, находящихся в приповерхностных слоях облучаемых металлов и сплавов, а также удаления нарушенного слоя, который возникает при механической подготовке материалов.
Для реализации заявляемого способа модификации особое значение имеют.
– выбор толщины удаляемого слоя, что обусловлено размерами структурных нарушений приповерхностных слоев при механической подготовке материалов;– температура и время вакуумного диффузионного отжига, поскольку удаление растворенных газов должно быть обеспечено на глубинах, превышающих глубину проплавления материала под действием мощного ионного пучка указанной плотности тока и длительности. Наиболее эффективным оказалось удаление слоя толщиной 4-7 мкм и вакуумный отжиг при температуре 550-600oC в течение 2-2,5 часов. Способ модификации металлов и сплавов осуществлялся следующим образом. Пример 1. Образцы из титанового сплава ВТ-6 (или ВТ-8) подвергали электрохимическому травлению для снятия наклепанного слоя толщиной 4-7 мкм. После чего их помещали в вакуумную термическую печь для проведения термического отжига при температуре 600oC в течение 2 часов при давлении 5 10-4 – 1 10-5 мм рт.ст. После отжига образцы устанавливали в приспособление, находящееся в вакуумной камере технологического ускорителя “Темп”, и облучали мощным импульсным ионным пучком, состоящим из 30% H+ и 70% C+, с энергией 300 кэВ, плотностью тока 50-150 А/см2, длительностью 50 нс. Образцы модифицированных титановых сплавов исследовали методами оптической и электронной микроскопия для определения плотности кратеров. Описанный способ модификации обеспечивает уменьшение плотности кратеров на облученной поверхности до 50 раз по сравнению с облучением без предварительной подготовки поверхности.
Формула изобретения
10-4-1 10-5 мм рт.ст.
4. Способ поверхностной модификации по п.1, отличающийся тем, что облучение подготовленной поверхности осуществляют мощным ионным пучком состава 30%C+ и 70%H+ с энергией 200-400 КэВ, плотностью тока 50-150 А/см2, 1-3 импульсами длительностью 30-50 нс.
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 27.01.2005
Извещение опубликовано: 27.12.2005 БИ: 36/2005
|
||||||||||||||||||||||||||

10-4 – 1