Патент на изобретение №2164363
|
||||||||||||||||||||||||||
(54) УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОЙ ПЛАЗМЫ И НЕЙТРОННОГО ИЗЛУЧЕНИЯ
(57) Реферат: Использование: для получения высокотемпературной плазмы с целью изучения ее свойств, а также генерации нейтронного излучения. Техническим результатом является повышение температуры плазмы и уровня нейтронного излучения. Сущность изобретения: устройство содержит источник основной электромагнитной энергии, источник начального магнитного поля и плазменную камеру, образованную коаксиальными электродами и состоящую из отсека ускорения и отсека торможения плазмы, при этом основной источник электромагнитного поля подключен к электродам отсека ускорения, кольцевой зазор между электродами отсека ускорения выполнен в форме сопла Лаваля, отсек торможения – в виде кольцевого зазора между продолжениями электродов отсека ускорения плазмы, плазменная камера дополнительно содержит второй отсек ускорения плазмы, при этом второй отсек ускорения расположен за отсеком торможения и выполнен симметрично первому отсеку ускорения, кольцевой зазор между электродами второго отсека ускорения также выполнен в виде сопла Лаваля, а источник начального магнитного поля подключен к электродам второго отсека ускорения. 1 ил. Изобретение относится к области плазменной техники и управляемого термоядерного синтеза и может быть использовано для получения высокотемпературной плазмы с целью изучения ее свойств, а также генерации нейтронного излучения. Известно устройство для получения высокотемпературной плазмы, содержащее два электродинамических ускорителя с импульсным напуском газа, два плазмопровода, камеру торможения или взаимодействия, а также систему синхронизации этих ускорителей (см. статью А.М.Житлухин, В.М.Сафронов, В.В.Сиднев, Ю. В.Скворцов. Удержание высокотемпературной плазмы с ![]() ![]() – в прототипе обмен энергией происходит между “горячими” высокоэнергетическими ионами, ускоренными в отсеке ускорения, и “холодными” ионами отсека торможения, в результате чего остаточная температура плазмы в отсеке торможения снижается с 10 до 3 кэВ; – в предлагаемом устройстве, кроме взаимодействия “горячих” ионов из первого и второго отсеков ускорения с “холодными” ионами общего отсека торможения, дополнительно происходит взаимодействие друг с другом “горячих” ионов из первого и второго отсеков ускорения. А так как потоки плазмы из первого и второго отсеков ускорения имеют большую скорость и направлены навстречу друг другу, то столкновение ионов и ударных волн происходит в “лоб” и наблюдается значительное энерговыделение, причем большая часть этой энергии идет на нагрев плазмы в общем отсеке торможения. В результате остаточная температура плазмы в отсеке торможения предлагаемого устройства поднимается примерно до 10 кэВ. На чертеже изображены продольный разрез плазменной камеры предлагаемого устройства и схема ее питания. Устройство для получения высокотемпературной плазмы и нейтронного излучения содержит источник основной электромагнитной энергии 1, источник начального магнитного поля 2 и плазменную камеру 3. Плазменная камера 3 образована коаксиальными внутренним электродом 4 и наружным электродом 5 и содержит первый 6 и второй 7 отсеки ускорения плазмы, а также общий отсек 8 торможения плазмы. Первый 6 и второй 7 отсеки ускорения плазмы выполнены зеркально симметрично друг другу, кольцевые зазоры между электродами отсеков ускорения выполнены в виде противоположно направленных сопл Лаваля 9 и 10. Отсек торможения 8 плазмы расположен в средней части плазменной камеры – в промежутке между “горбами” внутреннего электрода 4. Источник основной электромагнитной энергии 1 подключен к электродам первого отсека 6 ускорения плазмы, источник начального магнитного поля 2 – к электродам второго отсека 7 ускорения плазмы. Внутренний 4 и наружный 5 электроды плазменной камеры выполнены из бескислородной меди и изолированы друг от друга при помощи керамических изоляторов 11 и 12. Плазменная камера заполнена дейтерием или смесью изотопов водорода при начальном давлении 1-2 мм рт. ст. Длина камеры 21 см, диаметр 20 см. В качестве источника основной электромагнитной энергии может служить взрывомагнитный генератор с узлом быстрого переключения тока, который обеспечивает переброс энергии в камеру на уровне 0,12 МДж за время 2 мкс (см. книгу Г. Кнопфель. Сверхсильные импульсные магнитные поля. М., Мир, 1972, с. 221). В качестве источника начального магнитного поля может быть использована конденсаторная батарея с понижающим трансформатором. Работает устройство следующим образом. Вначале в плазменную камеру 3 путем пропускания по внутреннему электроду 4 и наружному электроду 5 тока от источника 2 вводят начальное азимутальное магнитное поле напряженностью 15-25 кЭ. Начальное магнитное поле вводят достаточно медленно за 200-300 мкс, чтобы избежать электрических пробоев в области сопел 9 и 10 и по поверхностям изоляторов 11 и 12 в отсеках ускорения плазмы (по кривой Пашена для водорода пробойное напряжение составляет примерно 250 В). После этого включают источник основной электромагнитной энергии 1 – взрывомагнитный генератор с узлом быстрого переключения тока, который выдает токовый импульс с большой амплитудой и крутым фронтом. Между внутренним 4 и наружным 5 электродами камеры появляется высокое напряжение и происходит электрический пробой по поверхностям изоляторов 11 и 12 (между боковыми стенками наружного электрода 5 и боковыми поверхностями внутреннего электрода 4). Газ ионизируется и становится проводящим. Проводимости достаточно для вмораживания начального магнитного поля в образовавшуюся плазму. Нарастающий ток и нарастающее в камере давление магнитного поля ускоряют плазму одновременно в первом 6 и втором 7 отсеках ускорения по направлению к соплам 9 и 10 Лаваля. При достаточно быстром нарастании напряженности основного магнитного поля до 60-80 кЭ и достаточно малой ширине сопл Лаваля напряженность магнитного поля в отсеках ускорения растет быстрее, чем в отсеке торможения 8, и скорость плазменных струй на выходе из сопл Лаваля становится выше местной альфвеновской скорости звука. В результате на выходе из сопл Лаваля – в камере торможения плазмы 8 за счет противодавления начального магнитного поля формируются ударные волны, в которых происходит торможение и нагрев плазмы, и генерируется нейтронное излучение. Потоки замагниченной плазмы и ударные волны из правого и левого сопл Лаваля, имеющие большие осевые и радиальные скорости, сталкиваются, смешиваются и интерферируют друг с другом в общей камере торможения плазмы 8, при этом происходит дополнительный нагрев плазмы, возрастают амплитуда и длительность нейтронного излучения. По сравнению с прототипом в предлагаемом устройстве за фронтом ударной волны вблизи плоскости столкновения плазменных потоков, согласно расчетным оценкам плотность плазмы может увеличиться в 4 раза, а температура в 10 раз. Уровень нейтронного излучения соответственно может увеличиться в среднем в 10 раз. Таким образом, предлагаемое устройство позволяет проводить научные исследования по изучению столкновительных и кумулятивных процессов в замагниченной термоядерной плазме, причем с меньшими затратами на сооружение экспериментальных установок и потерями энергии на транспортировку плазменных потоков, а также с большими температурой и внутренней энергией плазмы. Формула изобретения
РИСУНКИ
|
||||||||||||||||||||||||||