Патент на изобретение №2363665
|
||||||||||||||||||||||||||||||||||
(54) СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ ЦВЕТНЫХ И ТЯЖЕЛЫХ МЕТАЛЛОВ
(57) Реферат:
Изобретение относится к способам очистки сточных вод от цветных металлов и может быть использовано на предприятиях электронной и химической промышленности, черной и цветной металлургии, тяжелого машиностроения как для очистки общего стока, так и для локальной очистки. В сточную воду с pH 9,0-10,0 вводят ортофосфат-ион в виде растворимой соли ортофосфата натрия при массовом соотношении извлекаемого металла к введенному ортофосфат-иону 1:(0,5-1,0). Затем в раствор вводят раствор органического флокулянта полиакриламида гранулированного сульфатного ПАА-ГС при массовом соотношении извлекаемого металла к введенному флокулянту в пересчете на основное вещество 1:(0,005-0,0075) с последующей электрофлотационной обработкой при плотности тока 7,5-8,5 мА/см2. Технический эффект – повышение скорости процесса при сохранении высокой степени очистки сточных вод от тяжелых и цветных металлов, повышение производительности, сокращение продолжительности процесса, снижение удельных энергозатрат. 2 табл.
Изобретение относится к способам очистки сточных вод от ионов цветных и тяжелых металлов, в частности от никеля (Ni2+), меди (Сu2+), цинка (Zn2+), хрома (Сr3+), и может быть использовано на предприятиях электронной и химической промышленности, черной и цветной металлургии, тяжелого машиностроения как для очистки общего стока, так и для локальной очистки. Известен способ очистки сточных вод от тяжелых металлов с использованием в качестве реагента хлорид-ионов и гидроксида натрия с последующим электрофлотационным извлечением образовавшихся соединений (авторское свидетельство Наиболее близким по технической сущности и достигаемому результату является способ очистки сточных вод от цветных и тяжелых металлов в присутствии иона растворимой соли щелочного металла, включающий электрофлотацию с нерастворимыми анодами, заключающийся в том, что с целью повышения степени очистки в очищаемую воду с рН=9-10,0 вводят ортофосфат-ионы РO4 К недостатку относится невысокая скорость процесса очистки, составляющая 7 минут. Этот способ выбран за прототип. Задачей данного изобретения является разработка способа очистки сточных вод от цветных и тяжелых металлов, позволяющего повысить скорость электрофлотационного процесса очистки при сохранении высокой степени очистки за счет образования агломератов взвешенных частиц гидроксифосфата металла с малой плотностью и большой площадью поверхности. Поставленная задача решается тем, что в предлагаемом способе в сточную воду с pH 9,0-10,0, содержащую ион никеля Ni2+ меди Cu2+, цинка Zn2+ или хрома Сr3+ вводят ортофосфат-ионы РO4 Метод электрофлотации основан на адгезии взвешенных частиц нерастворимых соединений высокодисперсными пузырьками газов водорода и кислорода, образующихся при электролизе воды. Газовые пузырьки, всплывая в объеме воды, взаимодействуют с взвешенными частицами, в результате этого происходит их взаимное слипание. Плотность образующихся агрегатов взвешенных частиц с прилипшими к ним пузырьками газов меньше плотности воды, что обуславливает их транспорт на поверхность воды и накопление там в виде пенопродукта, который периодически удаляется механическим способом. Использование нерастворимых анодов из титана с депассивирующим активным покрытием из смеси оксидов титана и рутения обеспечивает высокое качество очистки и не приводит к вторичному загрязнению очищаемых стоков продуктами разрушения анодов. В присутствии органического флокулянта полиакриламида гранулированного сульфатного ПАА-ГС происходит увеличение размеров взвешенных частиц за счет их слипания и образования агломератов. Это способствует повышению эффективности захвата агломератов газовыми пузырьками и образованию устойчивых комплексов агломераты частиц – пузырьки газов, что приводит к увеличению скорости электрофлотационного процесса очистки. Изобретение иллюстрируется следующими примерами. Пример 1. В 1 л очищаемой воды, содержащей 50 мг-ион никеля Ni2+ добавляют раствор щелочи NaOH до значения pH 9,0-10,0, далее вводят 25 мг-ион ортофосфата РO4 Очищенную воду анализируют на содержание никеля методом атомно-адсорбционной спектроскопии. Аналогичные опыты проводят при времени процесса очистки 5 и 6 мин. При этом соотношение иона никеля к введенному флокулянту составляет 1:0,0025, 1:0,005, 1:0,0075 и 1:0,01. Данные приведены в табл.1. Как видно из приведенных данных, при времени электрофлотации 5 мин наибольшая степень извлечения наблюдается при массовом соотношении извлекаемого металла к введенному органическому флокулянту полиакриламиду гранулированному сульфатному (по основному веществу) 1:(0,005-0,0075). При увеличении соотношения более 0,0075 происходит стабилизация агрегативной устойчивости дисперсной системы, что приводит к ухудшению степени очистки. Пример 2. Исходный раствор того же состава, как в примере 1, очищают по такой же схеме, но электрофлотацию проводят при плотности тока 7,5 мА/см2. Как видно из приведенных данных, при времени электрофлотации 5 мин наибольшая степень извлечения наблюдается при массовом соотношении извлекаемого металла к введенному органическому флокулянту полиакриламиду гранулированному сульфатному (по основному веществу) 1:(0,005-0,0075). При этих условиях степень извлечения взвешенных частиц как и при плотности тока 8,5 мА/см2 не изменяется. Пример 3. Исходный раствор того же состава, как в примере 1, очищают по такой же схеме, но электрофлотацию проводят при плотности тока 6 мА/см2. Как показано в табл.1, в этом случае электрофлотационная очистка менее эффективна во всем диапазоне исследованных массовых соотношениях извлекаемого иона металла к введенному флокулянту в пересчете на основное вещество, чем при использовании плотности тока 7,5 и 8,5 мА/см2 из-за недостаточного газонаполнения раствора, что в свою очередь не приводит к улучшению условий электрофлотации. Пример 4. Исходный раствор того же состава, как в примере 1, очищают по такой же схеме, но электрофлотацию проводят при плотности тока 10 мА/см2. Как показано в табл.1, в этом случае электрофлотационная очистка существенно менее эффективна во всем диапазоне исследованных массовых соотношениях извлекаемого иона металла к введенному флокулянту в пересчете на основное вещество, чем при использовании плотности тока 7,5 и 8,5 мА/см2 из-за появления в растворе турбулентных потоков в жидкости в результате слишком бурного выделения газовых пузырьков. Для сравнения эффективности известного и предлагаемого способов проводилась очистка сточных вод с использованием одной и той же системы электродов, конструкции электрофлотатора, исходной концентрации ионов металлов и ортофосфат-ионов, pH среды. Полученные результаты представлены в табл.2. В предлагаемом способе при сохранении высокой степени очистки достигается высокая скорость электрофлотационного процесса очистки – 5 минут, что на 2 минуты меньше, чем в известном способе, и плотность тока – 7,5-8,5 мА/см2, что на 1,5-2,5 мА/см2 меньше, чем в известном способе. Технико-экономическая эффективность от применения предлагаемого способа обусловлена следующими факторами: повышение скорости процесса при сохранении высокой степени очистки сточных вод от тяжелых и цветных металлов при их сбросе в рыбохозяйственные водоемы; повышение производительности, сокращение продолжительности процесса, снижение удельных энергозатрат.
Формула изобретения
Способ очистки сточных вод от цветных металлов, включающий введение в сточные воды с pH 9,0-10,0 ортофосфата натрия при массовом отношении извлекаемого металла к введеному ортофосфат-иону 1:(0,5-1,0) и электрофлотацию с нерастворимыми анодами, отличающийся тем, что перед электрофлотацией в очищаемую воду вводят органический флокулянт полиакриламид гранулированный сульфатный при массовом соотношении извлекаемого иона металла к введенному флокулянту в пересчете на основное вещество 1:(0,005-0,0075), а электрофлотацию осуществляют при плотности тока 7,5-8,5 мА/см2.
|
||||||||||||||||||||||||||||||||||