Патент на изобретение №2363658

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2363658 (13) C1
(51) МПК

C01F7/04 (2006.01)
C01G51/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 30.08.2010 – действует

(21), (22) Заявка: 2007143895/15, 28.11.2007

(24) Дата начала отсчета срока действия патента:

28.11.2007

(46) Опубликовано: 10.08.2009

(56) Список документов, цитированных в отчете о
поиске:
Современные технологии в производстве газотурбинных двигателей. /Под ред. А.Г.БРАТУХИНА и др. – М.: Машиностроение, 1997, с.27. US 3259948 А, 12.07.1966. SU 496235 A1, 25.12.1975. SU 939500 A1, 30.06.1982. RU 2233796 C2, 10.08.2004. RU 2054443 C1, 20.02.1996. DE 19639353 C1, 16.04.1998. US 3748165 A, 24.07.1973.

Адрес для переписки:

105005, Москва, ул. Радио, 17, ФГУП “ВИАМ”

(72) Автор(ы):

Фоломейкин Юрий Иванович (RU),
Каблов Евгений Николаевич (RU),
Демонис Иосиф Маркович (RU)

(73) Патентообладатель(и):

Федеральное государственное унитарное предприятие “Всероссийский научно-исследовательский институт авиационных материалов” (ФГУП “ВИАМ”) (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНАТА КОБАЛЬТА

(57) Реферат:

Изобретение относится к области металлургии, в частности к способу получения алюмината кобальта, применяемого для поверхностного модифицирования литых деталей из жаропрочных сплавов. Смесь порошков оксида алюминия, оксида кобальта и кобальта углекислого основного водного, взятых при следующем соотношении компонентов, мас.%: оксид кобальта 25-40, кобальт углекислый основной водный 3-25, оксид алюминия – остальное, прокаливают и измельчают. Изобретение позволяет снизить материальные затраты.

Изобретение относится к литейному производству, в частности к способу получения алюмината кобальта, применяемого для поверхностного модифицирования литых деталей из жаропрочных сплавов, преимущественно лопаток ГТД и ГТУ.

Основные свойства жаропрочных сплавов являются структурно-чувствительными характеристиками. Равномерная мелкозернистая структура литого материала обеспечивает повышение его пластичности, сопротивление усталости и др. по сравнению с литым жаропрочным сплавом с неоднородной грубозернистой структурой. Мелкозернистую структуру литого материала получают за счет введения модификатора – алюмината кобальта – на поверхность литейной формы (Патент США 5983983, Патент Великобритании 2316640, Патент ЕР 0826445, Патент Японии 10180435).

В этом случае частицы алюмината кобальта выступают в качестве зародышей кристаллизации расплава, т.к. между алюминатом кобальта и кристаллизующимся расплавом существует размерное и кристаллографическое соответствие. Таким образом, алюминат кобальта существенно увеличивает количество центров кристаллизации и тем самым обеспечивает мелкозернистую структуру поверхности литых деталей. Общепринятая практика введения алюмината кобальта на поверхность литейной формы заключается в использовании керамической суспензии, содержащей алюминат кобальта, огнеупорный наполнитель и связующее, для нанесения на модельный блок лицевых слоев.

Известен способ получения алюмината, включающий смешивание исходных компонентов с введением затравки алюмината, соответствующей получаемому, первичную механическую активацию и термообработку при 700-900°С, а затем повторную механическую активацию и термообработку (Патент РФ 2108292).

Недостатком известного способа является сложная многостадийная технология, требующая для своей реализации высокоэнергонапряженных центробежных мельниц. Кроме того, для получения алюмината требуются дополнительные операции – приготовление затравок алюмината, соответствующему получаемому, что также удорожает процесс получения модификатора.

Известен способ получения алюмината кобальта, включающий синтез стехиометрического алюмината кобальта из смеси оксида алюминия и оксида кобальта (Со3О4) и последующее его измельчение. В синтезируемом алюминате кобальта Al2O3·CoO стехиометрического состава содержание оксида кобальта (СоО) составляет 42,3 мас.% (Патент США 3259948).

Недостатком данного способа получения алюмината кобальта является то, что при синтезе алюмината кобальта остается ~2,5 мас.% несвязанного оксида кобальта, что приводит к химическому взаимодействию модификатора с контактирующим расплавом жаропрочного сплава и ухудшению качества поверхности отливок.

Наиболее близким по технической сущности и достигаемому эффекту является способ получения алюмината кобальта, включающий приготовление смеси порошков оксида алюминия и оксида кобальта, ее прокалку при температуре 1350°С, при которой происходит синтез алюмината кобальта и измельчение синтезированного алюмината кобальта. При этом в качестве оксида алюминия использован электрокорунд, а в качестве оксида кобальта – окись-закись кобальта (Со3O4) при следующем соотношении компонентов в мас.%:

оксид алюминия 60
окись-закись кобальта (Со3O4) 40

(Современные технологии в производстве газотурбинных двигателе. Под ред. А.Г.Братухина, Г.К.Язова, Б.Е.Карасева, М.: Машиностроение, 1997 г., с.27-29).

При получении алюмината кобальта известным способом выявлены следующие недостатки.

При прокаливании смеси данного состава при температуре 1350°С образуются локальные включения с повышенным содержанием несвязанного оксида кобальта, что увеличивает содержание несвязанного оксида кобальта в готовом модификаторе до ~1,5 мас.%, хотя экспериментально установлено, что максимальное содержание несвязанного оксида кобальта не должно превышать 0,7 мас.%. Это приводит к браку отливок по поверхностным дефектам, которые образуются вследствие химических реакций на поверхностях раздела расплав – форма между оксидом кобальта и легирующими элементами жаропрочного сплава, в частности углеродом, алюминием, титаном, лантаном, иттрием и др., имеющими более высокое сродство к кислороду, чем кобальт.

В связи с этим практически невозможно получить качественный алюминат кобальта стехиометрического состава с низким содержанием несвязанного оксида кобальта (<0,7%), что приводит к дефектам готовой отливки.

Повышение температуры или времени прокалки смеси данного состава для более полного синтеза алюмината кобальта не дает стабильных результатов и экономически не оправдано, т.к. приводит к увеличению расхода электроэнергии. Наряду с этим существенно возрастает время его помола за счет спекания с образованием прочного брикета.

Технической задачей предлагаемого изобретения является разработка способа получения алюмината кобальта, применяемого для поверхностного модифицирования литых деталей из жаропрочных сплавов, позволяющего снизить содержание свободного кобальта в синтезируемом материале (модификаторе), исключить его взаимодействие с расплавленным металлом и получить отливку без поверхностных дефектов, а также снизить стоимость изготовления алюмината кобальта.

Для достижения поставленной цели предлагается способ получения алюмината кобальта, включающий приготовление смеси из порошков оксида алюминия и оксида кобальта, прокалку ее и измельчение, отличающийся тем, что в смесь порошков оксида алюминия и оксида кобальта дополнительно вводят кобальт углекислый основной водный при следующем соотношении компонентов, мас.%:

оксид кобальта 25-40
кобальт углекислый основной водный 3-25
оксид алюминия остальное

Использование в заявляемом способе кобальта углекислого основного водного [CoCO3×mCo(OH)×nH2O, мас. доля Со – 45-53%] обеспечивает в процессе высокотемпературного синтеза алюмината кобальта получение однородной композиции без локальных включений с повышенным содержанием несвязанного оксида кобальта. Полнота синтеза материала достигается за счет образования оксида кобальта в активной форме при разложении кобальта углекислого основного водного в процессе прокалки смеси порошков, при этом происходит дополнительное объемное перемешивание смеси и усреднение ее состава при последовательном выделении продуктов разложения: паров воды и диоксида углерода.

Увеличение содержания кобальта углекислого основного водного свыше 25% в составе смеси порошков вызывает нарушение однородности синтезируемого материала и образование локальных включений черного цвета, свидетельствующих о наличии несвязанного оксида кобальта, что приводит к повышенному содержанию несвязанного оксида кобальта (~1,5%) в модификаторе, а также к быстрому окислению нагревателей и снижению их стойкости в печи для синтеза модификатора, что увеличивает его себестоимость.

При содержании кобальта углекислого основного водного менее 3% в составе шихты наблюдается образование локальных включений черного цвета, что приводит к повышенному содержанию несвязанного оксида кобальта (~1,5%) в модификаторе.

Пример 1.

Взвешивали исходные компоненты при следующем соотношении, мас.%:

оксид алюминия 57
оксид кобальта 40
кобальт углекислый основной водный 3

CoCO3×mCo(OH)2×nН2O, мас. доля Со 45-53% (ГОСТ 5407-78).

Последовательно загружали исходные компоненты в фарфоровый барабан с алундовыми шарами. Затем осуществляли перемешивание смеси порошков в течение 3-4 ч.

Приготовленную смесь отделяли от шаров, загружали в огнеупорные короба и проводили синтез (прокалку) алюмината кобальта при температуре 1350°С в течение 10 ч в электрической печи с силитовыми нагревателями.

Визуальный контроль синтезированного алюмината кобальта показал полное отсутствие локальных включений черного цвета, образующихся при неполном синтезе, что исключает его взаимодействие с расплавленным металлом.

Синтезированный алюминат кобальта измельчали в шаровой мельнице до достижения удельной поверхности порошка, составляющей 5000 см2/г.

В результате контроля алюмината кобальта на полноту синтеза фотометрическим методом установлено, что содержание свободного кобальта в модификаторе не превышает 0,3 мас.%.

Пример 2.

Взвешивали исходные компоненты при следующем соотношении, мас.%:

оксид алюминия 55
оксид кобальта 35
кобальт углекислый основной водный 10

Последовательно загружали исходные компоненты в фарфоровый барабан с алундовыми шарами. Затем осуществляли перемешивание смеси порошков в течение 3-4 ч.

Приготовленную смесь отделяли от шаров, загружали в огнеупорные короба и проводили синтез (прокалку) алюмината кобальта при температуре 1350°С в течение 8 ч в электрической печи с силитовыми нагревателями.

Визуальный контроль синтезированного алюмината кобальта показал полное отсутствие локальных включений черного цвета, образующихся при неполном синтезе, что исключает его взаимодействие с расплавленным металлом.

Синтезированный алюминат кобальта измельчали в шаровой мельнице до достижения удельной поверхности порошка составляющей 8000 см2/г.

В результате контроля алюмината кобальта на полноту синтеза фотометрическим методом установлено, что содержание свободного кобальта в модификаторе не превышает 0,1 мас.%.

Пример 3.

Взвешивали исходные компоненты при следующем соотношении, мас.%:

оксид алюминия 50
оксид кобальта 25
кобальт углекислый основной водный 25

Последовательно загружали исходные компоненты в фарфоровый барабан с алундовыми шарами. Затем осуществляли перемешивание смеси порошков в течение 3-4 ч.

Приготовленную смесь отделяли от шаров, загружали в огнеупорные короба и проводили синтез (прокалку) алюмината кобальта при температуре 1350°С в течение 10 ч в электрической печи с силитовыми нагревателями.

Визуальный контроль синтезированного алюмината кобальта показал полное отсутствие локальных включений черного цвета, образующихся при неполном синтезе, что исключает его взаимодействие с расплавленным металлом.

Синтезированный алюминат кобальта измельчали в шаровой мельнице до достижения удельной поверхности порошка составляющей 11000 см2/г.

В результате контроля алюмината кобальта на полноту синтеза фотометрическим методом установлено, что содержание свободного кобальта в модификаторе не превышает 0,3 мас.%.

Пример 4 (по прототипу).

Взвешивали исходные компоненты при следующем соотношении, мас.%:

оксид алюминия 60
окись-закись кобальта (Со3O4) 40

Последовательно загружали исходные компоненты в фарфоровый барабан с алундовыми шарами. Затем осуществляли перемешивание смеси порошков в течение 3-4 ч.

Приготовленную смесь отделяли от шаров, загружали в огнеупорные короба и проводили синтез (прокалку) алюмината кобальта при температуре 1350°С в течение 10 ч в электрической печи с силитовыми нагревателями.

Визуальный контроль синтезированного алюмината кобальта показал наличие локальных включений черного цвета, образующихся при неполном синтезе, что приводит к его взаимодействию с расплавленным металлом.

Синтезированный алюминат кобальта измельчали в шаровой мельнице до достижения удельной поверхности порошка, составляющей 8000 см2/г.

В результате контроля алюмината кобальта на полноту синтеза фотометрическим методом установлено, что содержание свободного кобальта в модификаторе составляет 1,55 мас.%.

Применение предлагаемого способа получения алюмината кобальта позволило получить модификатор с содержанием несвязанного оксида кобальта <0,5 мас.%, включая алюминат кобальта стехиометрического состава, за счет исключения локальных включений с повышенным содержанием несвязанного оксида кобальта в синтезируемом материале, а также снизить стоимости его изготовления.

Использование алюмината кобальта, полученного предлагаемым способом, обеспечивает получение качественных отливок из жаропрочных сплавов, в частности лопаток ГТД и ГТУ.

Формула изобретения

Способ получения алюмината кобальта, включающий приготовление смеси из порошков оксида алюминия и оксида кобальта, прокалку ее и измельчение, отличающийся тем, что в смесь порошков оксида алюминия и оксида кобальта дополнительно вводят кобальт углекислый основной водный при следующем соотношении компонентов, мас.%:

оксид кобальта 25-40
кобальт углекислый основной водный 3-25
оксид алюминия остальное

Categories: BD_2363000-2363999