Патент на изобретение №2363064

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2363064 (13) C1
(51) МПК

H01F1/36 (2006.01)
B22F9/14 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 30.08.2010 – действует

(21), (22) Заявка: 2008102680/02, 23.01.2008

(24) Дата начала отсчета срока действия патента:

23.01.2008

(46) Опубликовано: 27.07.2009

(56) Список документов, цитированных в отчете о
поиске:
RU 2193251 С1, 20.11.2002. SU 800244 А, 10.02.1981. ТАКЕТОМИ С. и др. Магнитные жидкости: Пер. с японск. – М.: Мир, 1993, с.134-135. JP 60176927 А, 11.09.1985. JP 5159917 А, 25.06.1993.

Адрес для переписки:

150023, г.Ярославль, Московский пр., 88, ГОУВПО “ЯГТУ”

(72) Автор(ы):

Калаева Сахиба Зияддин кзы (RU),
Макаров Владимир Михайлович (RU),
Шипилин Анатолий Михайлович (RU),
Захарова Ирина Николаевна (RU),
Ерехинская Анна Геннадьевна (RU),
Бажанов Николай Николаевич (RU),
Шипилин Михаил Анатольевич (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Ярославский государственный технический университет” (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ МАГНИТНОЙ ЖИДКОСТИ

(57) Реферат:

Изобретение относится к получению магнитных жидкостей, а также к синтезу основного компонента магнитной жидкости феррофазы – высокодисперсного магнетита. Магнитную фазу магнитной жидкости получают электрохимическим растворением электродов из стали Ст 3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе поваренной соли с концентрацией NaCl 50-100 г/м3 при напряжении 24-36 В и плотности тока 15,6 А/мм2. Поверхность частиц магнетита покрывают в водной среде адсорбированным слоем стабилизирующего вещества и подогревают полученную суспензию. Частицы магнетита отделяют от водной фазы и смешивают с неводной жидкостью-носителем. Обеспечивается простота аппаратурного оформления и возможность управления интенсивностью процесса образования магнетита путем изменения параметров электролиза. 1 табл.

Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита). Магнитная жидкость – устойчивая коллоидная система высокодисперсных частиц магнитного материала (ферро- или ферримагнитных веществ), стабилизированного поверхностно-активными веществами в жидкости-носителе, которая способна взаимодействовать с магнитным полем и во многих отношениях ведет себя как однородная жидкость.

Магнитные жидкости, благодаря необычному сочетанию свойств магнетиков, жидкостей и коллоидных растворов, являются перспективным материалом и могли бы найти применение в различных областях техники: при создании магнитно-жидкостных уплотнений в химической промышленности, в качестве магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. Но их широкое применение ограничивается высокой стоимостью.

Получение магнитных жидкостей состоит из двух основных операций.

1. Получение высокодисперсных частиц магнетика.

2. Стабилизация частиц магнетика в жидкости-носителе с использованием диспергирующего вещества, предотвращающего агрегирование частиц магнетика в жидкости-носителе и обеспечивающего устойчивость магнитной жидкости.

Известен способ получения магнитной жидкости. Первоначально в качестве феррофазы при получении магнитной жидкости использовали материалы, обладающие более высокими магнитными свойствами – высокодисперсное металлическое железо, кобальт, мягкие магнитные сплавы типа пермендюр [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. – Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, – с.21-28]. Однако при использовании чистых металлов возникает ряд технологических трудностей, связанных как с получением высокодисперсных частиц и их защитой от окисления, так и с их стабилизацией с последующим диспергированием в жидкости-носителе. Поэтому наряду с металлами в качестве феррофазы все чаще используется магнетит (окид-закись железа), который хотя и уступает металлам по магнитным характеристикам, но благодаря простоте получения высокодисперсных частиц, хорошей адсорбционной способности и химической устойчивости позволяет получать магнитные жидкости, которые превосходят по магнитным параметрам магнитные жидкости на металлах.

Известен также способ получения магнитной жидкости, заключающийся в осаждении частиц магнетита из водных растворов солей Fe2+ и Fe3+ – избытком щелочи (NaOH и NH4OH). Предпочтительными солями являются хлориды и сульфаты из-за их доступности и экономичности. Присутствие ионов других металлов – Mg2+, Cr3+, Ni2+, Cu2+ – не является вредным, если их содержание невелико.

Осадок магнетита промывают декантацией от избытка щелочи и удаления солей до достижения рН=7. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. Магнитная жидкость получается добавлением к водной суспензии магнетита жидкости-носителя, в которой растворен стабилизатор – ПАВ. В качестве жидкости-носителя используется керосин, в качестве стабилизатора – олеиновая кислота. При хемосорбции олеиновой кислоты на поверхности частиц магнетита образуется адсорбционный слой. При этом происходит обезвоживание частиц магнетита и разделение фаз, то есть выделение магнетита из водной среды и его переход в среду жидкости-носителя [Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. – Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, – с.21-28].

Известен также [Ахалая М.Г., Кокиашвили М.С., Берия В.П. Перспективы применения магнитных жидкостей в биологии и медицине. – В кн.: Физические свойства магнитных жидкостей: – Сб. статей. – Свердловск, УНУ АН СССР, 1983. – С.115-120] способ получения магнитной жидкости, в котором синтез феррофазы осуществляется как в книге: Матусевич Н.П., Рахуба В.К. Получение магнитных жидкостей методом пептизации. – В кн.: Гидродинамика и теплофизика магнитных жидкостей. – Тезисы докладов Всесоюзного симпозиума. Саласпилс, ин-т АН Латвийской ССР, 1980, – с.21-28, затем производится удаление воды из осадка последовательной промывкой его ацетоном, толуолом. Для получения магнитной жидкости в требуемой жидкости-носителе толуол сливают с осадка магнетита, влажный осадок переносят в фарфоровую ступку, добавляют к нему стабилизатор – олеиновую кислоту. Из полученной смеси толуол выпаривают нагреванием до 90-110°С при непрерывном растирании осадка. После испарения толуола смесь продолжают тщательно растирать при той же температуре. Полученную массу переносят с помощью требуемого количества дисперсионной среды в мельницу и гомогенизируют в стальной мельнице, на 1/2 заполненной стальными шарами. Нужная степень пептизации достигается за 6-12 ч.

Известен способ получения магнитной жидкости, включающий образование суспензии магнетита путем соосаждения из растворов ионов двух- и трехвалентного железа, покрытие поверхности частиц магнетита адсорбированным слоем стабилизирующего вещества, отделение от суспензии фракции, содержащей стабилизированные магнитные частицы в жидкости-носителе, а в качестве источника трехвалентного железа для получения магнитной феррофазы используется солянокислый раствор осадка-отхода очистки сточных вод гальванических цехов [Патент РФ 2182382, Бюл. 13, 2002, МПК Н01F 1/36].

Описанные способы получения магнитной жидкости отличаются трудоемкостью и длительностью процессов с получением дорогостоящего продукта.

Наиболее близким к предлагаемому изобретению является способ получения магнитной жидкости, выбранный нами за прототип [патент РФ 2193251, Бюл. 32, 2002, МПК H01F 1/28].

Он состоит из следующих стадий: смешение в требуемом

соотношении (Fe3+/Fe2+=3:2) солянокислого раствора осадка – гальваношлама и отработанного травильного раствора; получение суспензии магнитных частиц оксидов Fe2+ и Fe3+ коллоидного размера пептизацией смеси растворов добавлением гидроксида аммония 28%-ного; покрытие осажденных частиц оксидов Fe2+ и Fe3+ в водной среде стабилизирующим веществом, образующим в избытке гидроксида аммония аммонийную соль, растворимую в воде; подогрев суспензии стабилизированных частиц для преобразования стабилизирующего вещества (разложение его аммонийной соли с образованием аммиачного газа) и превращение в нерастворимую в воде форму и отделение их от водной фазы; образование магнитной жидкости при смешении коагулянта с неводными жидкими носителями, которые обладают некоторой растворимостью по отношению к стабилизирующему веществу.

Задачей настоящего изобретения является усовершенствование способа получения магнитной жидкости. Для этого магнитная фаза магнитной жидкости – магнетит – получается электрохимическим способом путем растворения электродов из Ст 3 в электропроводящем растворе поваренной соли. Электрохимический способ отличается простотой, дешевизной аппаратурного оформления и возможностью управления интенсивностью процесса образования магнетита путем изменения параметров электролиза.

Поставленная задача решается следующим образом: получение суспензии магнетита; покрытие поверхности частиц магнетита в водной среде адсорбированным слоем стабилизирующего вещества; подогрев суспензии частиц магнетита с адсорбированным на них слоем стабилизирующего вещества, отделение их от водной фазы и смешение с неводной жидкостью-носителем нагрев суспензии и доведение до кипения при постоянном перемешивании; центрифугирование смеси после ее остывания для отделения крупнодисперсных частиц.

Способ получения магнитной жидкости иллюстрируется следующим примером.

В емкость, содержащую раствор поваренной соли (концентрация NaCI – 50-100 г/м3), погружались электроды из Ст 3, расстояние между которыми составляет 5-15 мм, подается напряжение 24-36 В, обеспечивающая плотность тока 15,6 А/мм2. В результате электролизов в данных условиях образуется черный осадок магнетита, идентифицированного рентгенографическим анализом и Мёссбауэровской спектроскопией. Выход по току составляет 95-97% магнетита. Полученный магнетит обладает дисперсностью, легко стабилизируется и диспергируется. После наработки необходимого количества магнетита смесь подогревают до 95°С и добавляют 50 см3 керосина и 5 см3 олеиновой кислоты (при интенсивном перемешивании). Затем продолжают подогрев, и происходит отчетливое разделение водной и органической фаз. Водную фазу удаляют с помощью пипетки. Этим уменьшают время подогрева. Подогрев продолжают до тех пор, пока не истощится вода и температура органической фазы на возрастет до 130°С.

Жидкость охлаждают до комнатной температуры и сливают в мензурку. Добавляют керосин до объема 55 см3, чем компенсируют потерю керосина во время подогрева. Свойства полученной магнитной жидкости представлены в таблице – МЖ1.

Для сравнения в таблице представлены показатели магнитной жидкости из патента 2193251, Бюл. 32, 2002, МПК: Н01F 1/28 – МЖ2.

Таблица
Показатели магнитных жидкостей
Показатели Магнитная жидкость
МЖ1 МЖ2
Объемная доля магнетита, % 5,76 3,08
Плотность, кг/м3 975 925
Вязкость, Па·с·103 3,112 2,909
Намагниченность насыщения, кА/м 7,44 4,35

Формула изобретения

Способ получения магнитной жидкости, включающий получение магнитной фазы магнитной жидкости в виде суспензии магнетита, покрытие поверхности частиц магнетита в водной среде адсорбированным слоем стабилизирующего вещества, подогрев полученной суспензии, отделение частиц магнетита от водной фазы и их смешение с неводной жидкостью-носителем, отличающийся тем, что магнитную фазу магнитной жидкости получают электрохимическим растворением электродов из стали Ст 3, расстояние между которыми составляет 5-15 мм, в электропроводящем растворе поваренной соли с концентрацией NaCl 50-100 г/м3 при напряжении 24-36 В и плотности тока 15,6 А/мм2.

Categories: BD_2363000-2363999