Патент на изобретение №2164019

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2164019 (13) C2
(51) МПК 7
G01N15/06, G01N27/72, G01N22/00
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – прекратил действие

(21), (22) Заявка: 98103430/28, 12.02.1998

(24) Дата начала отсчета срока действия патента:

12.02.1998

(43) Дата публикации заявки: 20.02.2000

(45) Опубликовано: 10.03.2001

(56) Список документов, цитированных в отчете о
поиске:
RU 2084887 С1, 20.07.1997. SU 924557, 30.04.1982. FR 2584190 А1, 02.01.1987. WO 95/27895 А1, 19.10.1995.

Адрес для переписки:

392006, г.Тамбов-6, ТВВАИУ, Научно-исследовательский отдел

(71) Заявитель(и):

Суслин Михаил Алексеевич,
Дмитриев Дмитрий Александрович

(72) Автор(ы):

Суслин М.А.,
Дмитриев Д.А.

(73) Патентообладатель(и):

Тамбовское высшее военное авиационное инженерное училище

(54) СПОСОБ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ ФЕРРОМАГНИТНЫХ ЧАСТИЦ В ЖИДКОСТИ


(57) Реферат:

Изобретение относится к способам определения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц (ФМЧ) в жидкости в химической и других отраслях промышленности, в частности, при контроле горюче-смазочных материалов на содержание металлических феррочастиц. Технический результат – повышение точности и чувствительности измерения концентрации ФМЧ в жидкости в области малых концентраций. Сущность изобретения: фиксированный объем с жидкостью помещают в линейно-поляризованное электромагнитное и постоянное магнитные поля, объем жидкости с ферромагнитными частицами располагают аксиально в цилиндрическом резонаторе в виде замкнутого проводящего полого цилиндра. Направление постоянного магнитного поля совмещают с осью цилиндрического резонатора, определяют резонанс колебания Н111 без поля подмагничивания и измеряют нагруженную добротность резонатора. Создают постоянное магнитное поле, соответствующее продольному феррорезонансу, с последующим измерением нагруженной добротности объемого резонатора. Концентрацию определяют как разность обратных величин нагруженных добротностей без и с полем подмагничивания соответственно. 1 ил.


Предлагаемое изобретение относится к способам определения концентрации дисперсных систем и может быть использовано для контроля и регулирования концентрации ферромагнитных частиц (ФМЧ) в жидкости в химической и других отраслях промышленности, в частности, при контроле горюче-смазочных материалов на содержание металлических феррочастиц.

Известен способ определения концентрации ферромагнитных частиц в жидкости (см. Наумов А.А., Черняк В.В. Портативный измеритель концентрации магнитной суспензии. Дефектоскопия 1971, N 2, с. 124), заключающийся в пропускании жидкости с феррочастицами через диэлектрический отрезок трубопровода, осуществлении взаимодействия переменного магнитного поля катушки индуктивности, намотанной на диэлектрический отрезок трубопровода, с частицами ферромагнетика и измерений концентрации с помощью электрической измерительной схемы по изменению параметров катушки индуктивности.

Недостатками способа являются значительная погрешность измерения, обусловленная нелинейной зависимостью индуктивности катушки от концентрации ФМЧ и за счет изменения индуктивности от вариации электропроводности данной жидкости, и низкая чувствительность к концентрации ферромагнитных частиц.

Наиболее близким к предлагаемому изобретению является способ определения концентрации ферромагнитных частиц в жидкости (см. авт.св. СССР N 924557, кл. G 01 N 15/00, 1982 г., Б.И. N 16), который заключается в том, что помещают объем с жидкостью в линейно-поляризованное высокочастотное электромагнитное (ЭМ) поле и постоянное магнитное поле, при этом направление вектора напряженности постоянного магнитного поля совмещают с направлением распространения излучения в жидкости, измеряют длину пути и угол поворота плоскости поляризации прошедшего излучения в жидкости, и по результатам измерений судят о концентрации ферромагнитных частиц.

Недостатком способа является недостаточная точность из-за сложности измерения двух геометрических параметров, а также из-за наличия в объеме жидкости наряду с падающей линейно-поляризованной ЭМ волной еще и отраженной волны, так как трудно обеспечить режим согласования (коэффициент бегущей волны не равен единице).

За прототип принят способ (см. патент N 2084887 от 20.07.97 /Д.А. Дмитриев, М.А. Суслин, И.В. Кораблев, Б.И. Герасимов/ Способ измерения концентрации ферромагнитных частиц в жидкости), который заключается в том, что фиксированный объем с жидкостью помещают в линейно-поляризованное электромагнитное и постоянное магнитные поля, объем жидкости с ферромагнитными частицами располагают аксиально в цилиндрическом резонаторе в виде замкнутого проводящего полого цилиндра, в резонаторе возбуждают колебания H11p, где p – число полуволн, укладывающихся по длине резонатора, направление постоянного магнитного поля совмещают с осью цилиндрического резонатора, определяют два значения расщепленной собственной резонансной частоты и по их разности судят о концентрации ферромагнитных частиц в жидкости.

Недостатком способа являются то, что в области малых концентраций измеряемое ее значение становится соизмеримым с порогом чувствительности, равному такому изменению концентрации, при котором происходит расстройка, равная удвоенной полосе пропускания нагруженной резонансной системы.

Предлагаемое изобретение направлено на повышение точности и чувствительности измерения концентрации ФМЧ в жидкости в области малых концентраций.

Это достигается тем, что в способе определения концентрации ферромагнитных частиц в жидкости, заключающемся в том, что фиксированный объем с жидкостью помещают в линейно-поляризованное электромагнитное и постоянное магнитное поля, объем жидкости с ферромагнитными частицами располагают аксиально в цилиндрическом резонаторе в виде замкнутого проводящего полого цилиндра, направление постоянного магнитного поля совмещают с осью цилиндрического резонатора, дополнительно определяют резонанс колебания H111 без поля подмагничивания и измеряют нагруженную добротность резонатора, создают постоянное магнитное поле, соответствующее продольному феррорезонансу, с последующим измерением нагруженной добротности объемного резонатора, концентрацию определяют как разность обратных величин нагруженных добротностей без и с полем подмагничивания соответственно.

На чертеже представлена схема реализации предлагаемого способа.

Если в цилиндрическом объемном резонаторе (ОР) 1 с аксиальным расположением исследуемой жидкости с ФМ частицами 2 возбудить колебание H111, а величину постоянного поля подмагничивания H0, создаваемого током соленоида 3, выбрать равной продольному феррорезонансу
(1)
где p– резонансная циклическая частота настройки колебания H111 OP; 0=2.25105 м/Ас – гиромагнитное отношение, то резонансная частота колебания H111 не расщепляется на две частоты f и f+ (см. Микаэлян А.Л. Теория и применение ферритов на СВЧ, ГЭИ, 1963, с.137), а определяется геометрическими размерами OP, диэлектрическими свойствами и размерами объема жидкости с ФМЧ. Это объясняется ходом кривых компонентов тензора магнитной проницаемости феррита при Hрез = H0, а именно равенство действительных эффективных магнитных проницаемостей для право- и левополяризованных по кругу волн +и магнитной проницаемости вакуума 0:
+=+k==-k=0, (2)
при этом мнимые части, характеризующие резонансные потери, определяются выражениями:
(3)
(см. Микаэлян А.Л. Теория и применение ферритов на СВЧ, ГЭИ, 1963, с.). Следствием (2) является равенство возмущенных резонансных частот колебания H111 цилиндрического OP без и с полем (1) подмагничивания.

Парциальная добротность Qп, вызванная потерями на феррорезонанс (поддержание прецессионного движения электронов), равна:
(4)
где H- ширина полосы феррорезонанса в А/М; А – намагниченность насыщения феррита в Тл; C – объемная концентрация, %; – резонансная частота колебания H111; Wзап – запасенная энергия электрического поля пустого OP; Pрез – мощность потерь на феррорезонанс в ФМ частицах.

Общая нагруженная добротность резонатора Q:
Q = (Qп Qо)/ (Qп + Qo), (5)
где Qо – добротность, обусловленная потерями энергии на ее ввод-вывод, в стенках OP и омическими потерями в жидкости с феррочастицами.

Основным фактором погрешности определения концентрации является случайное варьирование электропроводности магнитной суспензии и потерь в резонаторе. Он устраняется следующим образом. Определяются коэффициенты затухания колебания H111 при H0=0 и H0 = Hрез:


тогда их разность
не зависит от потерь на ввод-вывод ЭМ энергии (Pвв, выв), в стенках резонатора (Pст) и омических потерь магнитной суспензии P, а определяется только потерями на феррорезонанс Pрез. В этом случае статическая характеристика – это выражение (4).

Способ определения концентрации ФМ частиц заключается в следующем: в цилиндрическом OP аксиально помещают исследуемую жидкость с феррочастицами, определяют резонанс колебания H111 без поля подмагничивания и измеряют нагруженную добротность резонатора, по оси резонатора создают постоянное магнитное поле, соответствующее продольному феррорезонансу, с последующим измерением нагруженной добротности OP, концентрацию определяют как разность обратных величин нагруженных добротностей без и с полем подмагничивания соответственно.

Сравним метрологические характеристики предлагаемого способа и прототипа.

Если в качестве примера в прототипе выбрать r1 = 0,2 r0,

то изменение концентрации на 0,8% вызывает изменение разности расщепленных частот f+ – f на величину, равную удвоенной полосе пропускания нагруженной колебательной системы.

Определим методическую погрешность предлагаемого способа, обусловленную измерением резонансной частоты колебания H111 за счет варьирования концентрации, по следующей формуле:
(6)
где Q() и Q(0)- нагруженные добротности для частот возмущенного и 0 пустого резонаторов. В диапазоне C = 1-10% для после подстановки (5) в (6) относительная методическая погрешность не превышает 3%. В погрешность определения концентрации следует добавить погрешность определения нагруженной добротности 2-5%. Тогда как в прототипе только относительно методическая погрешность при концентрации C=1% – не менее 80% и уменьшается до 8% для C=10%.

Формула изобретения


Способ определения концентрации ферромагнитных частиц в жидкости, заключающийся в том, что фиксированный объем с жидкостью помещают в линейно-поляризованное электромагнитное и постоянное магнитное поля, объем жидкости с ферромагнитными частицами располагают аксиально в цилиндрическом резонаторе в виде замкнутого проводящего полого цилиндра, направление постоянного магнитного поля совмещают с осью цилиндрического резонатора, отличающийся тем, что определяют резонанс колебания Н111 без поля подмагничивания и измеряют нагруженную добротность резонатора, создают постоянное магнитное поле, соответствующее продольному феррорезонансу, с последующим измерением нагруженной добротности объемного резонатора, концентрацию определяют как разность обратных величин нагруженных добротностей без и с полем подмагничивания соответственно.

РИСУНКИ

Рисунок 1


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 13.02.2000

Номер и год публикации бюллетеня: 6-2002

Извещение опубликовано: 27.02.2002


Categories: BD_2164000-2164999