Патент на изобретение №2163937

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2163937 (13) C1
(51) МПК 7
C22C21/00, C22C25/00
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – действует

(21), (22) Заявка: 99119110/02, 01.09.1999

(24) Дата начала отсчета срока действия патента:

01.09.1999

(45) Опубликовано: 10.03.2001

(56) Список документов, цитированных в отчете о
поиске:
SU 486699, 25.12.1977. SU 310946, 01.10.1971. US 3477844, 11.11.1969. RU 2090643 C1, 20.09.1997. US 3664889, 23.05.1972. EP 0921203 A1, 07.12.1998.

Адрес для переписки:

107005, Москва, ул. Радио 17, ВИАМ, генеральному директору Каблову Е.Н.

(71) Заявитель(и):

Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов

(72) Автор(ы):

Фридляндер И.Н.,
Каблов Е.Н.,
Яценко К.П.,
Сандлер В.С.,
Каськов В.С.,
Захарова Т.А.

(73) Патентообладатель(и):

Государственное предприятие Всероссийский научно-исследовательский институт авиационных материалов

(54) СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ


(57) Реферат:

Изобретение относится к созданию легких высокомодульных сплавов системы алюминий – бериллий, предназначенных для применения в легких жестких конструкциях авиационной и ракетно-космической техники. Технической задачей данного изобретения является создание легких высокомодульных сплавов, существенно превосходящих другие по удельной прочности и удельному пределу текучести при сохранении пластичности и обладающих более тонкой кристаллической структурой с равномерными тонкодисперсными интерметаллидными включениями. Сплав содержит, мас.%: бериллий 25 – 35, магний 4 – 6, бор 0,5 – 1,0, стронций 0,3 – 0,5, алюминий – остальное. 2 табл.


Изобретение относится к области металлургии, а именно к созданию легких высокомодульных сплавов на основе алюминия системы алюминий – бериллий, предназначенных для применения в легких жестких, в том числе сварных, конструкциях авиационной и ракетно-космической техники.

Известен зарубежный аналог – высокомодульный порошковый алюминиево-бериллиевый сплав “Локэллой” LX-40-3, содержащий 40% бериллия, 3% магния, остальное алюминий. Главным недостатком этого сплава является то, что порошковый сплав LX-40-3 является несвариваемым и малопластичным. Кроме того, так как сплав LX-40-3 является порошковым, технология его получения трудоемка (“Наука и технология”. Под ред. Д.Вебстера, Т.Ф.Лондона, Д.Р.Флойда, Д.Н.Лоуве. Перевод с английского под редакцией Г.Ф.Тихинского и И.И.Папирова. – М. : Металлургия, 1984, 623 с.).

За прототип принят известный высокомодульный алюминиево-бериллиевый сплав АБМ-1, содержащий 28-32% бериллия; 2,8-5,5% магния, остальное – алюминий (“Бериллий – материал современной техники”. Справочник. – М.: Металлургия, 1992).

Сплав АБМ-1 по удельной жесткости превосходит все известные традиционные алюминиевые сплавы в 2,3 раза и близок по величине удельной жесткости к удельной жесткости предлагаемого сплава, но значительно уступает ему по удельным характеристикам прочности, предела текучести как при 20oC, так и при повышенных температурах.

Технической задачей данного изобретения является создание легкого высокомодульного сплава, существенно превосходящего прототип по удельной прочности и удельному пределу текучести, при сохранении пластичности на уровне или выше, чем у прототипа, и обладающего более тонкой кристаллической структурой с равномерными тонкодисперсными интерметаллическими включениями. Благодаря этому предлагаемый сплав обладает также по сравнению с прототипом более высокой теплопроводностью при температурах до 200oC.

Для достижения поставленной задачи предложен сплав следующего химического состава (мас.%):
бериллий – 25-35
магний – 4-6
бор – 0,5-1,0
стронций – 0,3-0,5
алюминий – остальное
При создании предлагаемого сплава в результате исследований определены пути и характер совместной кристаллизации фаз, протекающих с участием (Be)-фазы. Было установлено, что получаемое существенное упрочнение сплава системы алюминий-бериллий-магний при введении бора и стронция достигается за счет выделения тонких интерметаллидных соединений совместно с алюминиевым твердым раствором, что способствует измельчению структуры сплава и росту удельных прочностных характеристик при сохранении высокой пластичности и повышению теплопроводности сплава. Прирост прочностных характеристик достигает 8-10 кгс/мм2 при относительном удлинении 13-17% (при 20oC). Кроме того, бор и стронций повышают прочностные характеристики на 4-5 кгс/мм2 и относительное удлинение до 16-20% при 200oC.

Пример осуществления
Сплавы предлагаемого состава выплавлялись в вакуумной индукционной печи в атмосфере гелия (или аргона) с отливкой в медную изложницу, масса которой в 10 раз превышала массу получаемых слитков. Слитки выдавливались на прессе при температуре 300-400oC на прутки диаметром 10-12 мм. Изготовленные из прутков образцы для определения механических свойств отжигались при температуре 400-420oC с двухчасовой выдержкой при этой температуре. Химический состав сплавов и их свойства приведены в табл. 1, 2.

Как видно из табл. 2, предложенный сплав обладает существенными преимуществами по сравнению с прототипом АБМ-1 по удельным прочностным характеристикам (в/; 0,2/) соответственно на 22,9 и 24,3% при повышении прочностных характеристик при 220oC на 4-5 кгс/мм2.

Свойства сплавов, химический состав которых выходит за пределы предлагаемого состава (примеры 4, 5), находятся примерно на уровне сплава-прототипа и не удовлетворяют по удельной прочности и удельному пределу текучести, а также по прочностным характеристикам при 200oC.

Применение предлагаемого сплава благодаря сочетанию высоких прочностных и технологических свойств с высокой надежностью позволили создавать тонкие, жесткие и легкие конструкции. Использование этого материала наиболее целесообразно и экономически оправдано в таких областях техники, как ракетно-космическая, авиационная, лазерная техника.

Формула изобретения


Сплав на основе алюминия, содержащий бериллий, магний, отличающийся тем, что он дополнительно содержит бор и стронций при следующем соотношении компонентов, мас.%:
Бериллий – 25 – 35
Магний – 4 – 6
Бор – 0,5 – 1,0
Стронций – 0,3 – 0,5
Алюминий – Остальное

РИСУНКИ

Рисунок 1, Рисунок 2

Categories: BD_2163000-2163999