Патент на изобретение №2360029
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ВЫСОКОПРОЧНАЯ НЕМАГНИТНАЯ КОМПОЗИЦИОННАЯ СТАЛЬ
(57) Реферат:
Изобретение относится к области металлургии, а именно к составам высокопрочной немагнитной коррозионно-стойкой композиционной стали, используемой в машиностроении, авиастроении, специальном судостроении, приборостроении и при создании высокоэффективной буровой техники. Сталь содержит углерод, кремний, марганец, хром, никель, азот, ниобий, молибден, ванадий, нитрид циркония, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,04-0,12, кремний 0,10-0,60, марганец 5,0-12,0, хром 19,0-21,0, никель 4,0-9,0, молибден 0,5-1,5, ванадий 0,10-0,55, ниобий 0,03-0,30, азот 0,4-0,7, нитрид циркония 0,03-1,00, железо и неизбежные примеси остальное. Нитрид циркония содержится в виде частиц с наноразмерной дисперсностью. Повышаются прочностные свойства стали при одновременном повышении показателей пластичности и вязкости. 1 з.п. ф-лы, 2 табл.
Изобретение относится к области металлургии и может быть использовано в машиностроении, авиастроении, специальном судостроении, приборостроении и для создания высокоэффективной буровой техники. Известна немагнитная сталь следующего химического состава, мас.%: углерод 0,01-0,05; хром 21,0-24,0; марганец 12,0-15,0; никель 1,0-8,0; азот 0,65-0,80; молибден 0,5-1,0; ванадий 0,25-1,0; кальций 0,0015-0,020; железо остальное (Авт. свид. СССР Недостатком стали является недостаточно высокие характеристики пластичности и вязкости и развитие межкристаллитной коррозии за счет наличия в стали ванадия, который соединяясь с азотом и углеродом образует нитриды и карбиды ванадия, выделяющиеся при затвердевании по границам аустенитных зерен. Кроме этого, ванадий как ферритообразующий элемент способствует выделению ферромагнитной фазы ( Наиболее близкой по технической сущности и достигаемому результату является высокопрочная немагнитная коррозионно-стойкая свариваемая сталь следующего химического состава, мас.%: углерод 0,04-0,9, кремний 0,10-0,60, марганец 5,0-12,0 хром 19,0-21,0, никель 4,5,0-9,0, молибден 0,5-1,5; ванадий 0,10-0,55; кальций 0,005-0,010; ниобий 0,03-0,30, азот 0,40-0,70; неизбежные примеси и железо остальное. При этом для значений концентраций легирующих элементов выполняется условие: [Ni]+0,1[Mn]-0,01[Mn]2+18[N]+30[C]/[Cr]+l,5[Mo]+0,48[Si]+2,3[V]+l,75[Nb]=0,70-0,90, где [N], [С], [Si], [Mn], [Ni], [Cr], [Mo], [V], [Nb] – концентрация в стали азота, углерода, кремния, марганца, никеля, хрома, молибдена, ванадия и ниобия соответственно, выраженная в массовых процентах. Соотношение содержания углерода к содержанию азота равно 0,05-0,15. Кроме того, сталь обладает развитой субзеренной структурой после горячей пластической деформации при температуре 1000-1050°С с обжатием 50-80% и последующим охлаждением в воде до комнатной температуры. Сталь обладает мелкозернистой аустенитной структурой после закалки в воде от температуры 1030-1070°С (Патент РФ Недостатком указанной стали являются недостаточно высокие характеристики пластичности и вязкости стали, так как наличие сильных карбидо- и нитридообразующих элементов ниобия и ванадия приведет к выделению крупноразмерных как карбидов, так и нитридов ниобия и ванадия по границам аустенитного зерна при затвердевании стали, что снизит характеристики пластичности и вязкости. Задачей, решаемой изобретением, является получение стали, обладающей повышенными прочностными свойствами с высокими показателями пластичности и вязкости. Указанная задача решается тем, что высокопрочная немагнитная коррозионно-стойкая композитная сталь, включающая углерод, кремний, марганец, хром, никель, азот, ниобий, молибден, ванадий, железо, дополнительно содержит нитрид циркония при следующем соотношении компонентов, мас.%:
Сталь содержит нитрид циркония в виде частиц с наноразмерной дисперсностью. Введение в состав стали мелкодисперсных нитридов циркония с наноразмерной дисперсностью позволит образовать большое количество центров кристаллизации, равномерно распределенных в объеме металла. В процессе затвердевания стали химически стойкие частицы нитрида циркония, находясь в высокоазотистом расплаве обладают повышенной устойчивостью к диссоциации и будут являться инокуляторами, центрами кристаллизации аустенитных зерен, что существенно измельчит первичное аустенитное зерно, увеличит площадь границ аустенитных зерен, а также увеличит скорость затвердевания отливок. Это существенно уменьшит количество и увеличит дисперсность карбидов и нитридов ванадия и ниобия, выпадающих по границам аустенитных зерен, что в конечном счете приведет к увеличению прочностных свойств и одновременно показателей пластичности и вязкости. При содержании в стали мелкодисперсных нитридов циркония в количестве меньшем 0,03 мас.% не происходит увеличения прочностных свойств, так как не происходит достаточного измельчения зерна и стабилизации границ зерен. При содержании нитридов циркония более 1,00 мас.% происходит ухудшение характеристик пластичности и вязкости, так как нитриды циркония начинают выделяться в избыточном количестве по границам зерен. Таким образом, техническим результатом изобретения является повышение прочностных свойств стали при одновременном повышении показателей пластичности и вязкости. Пример. Выплавку стали производили в открытой основной индукционной печи вместимостью 160 кг методом сплавления нержавеющих азотсодержащих отходов и чистых ферросплавов. Азот вводили в состав стали азотированными отходами и азотированными ферросплавами хрома и марганца. Нитрид циркония получали методом СВС в режиме фильтрационного горения. После азотирования спек нитрида циркония дробили и измельчали до фракции менее 100 нм в шаровой мельнице в течение 5 минут. Нитрид циркония вводили в металлических капсулах на струю металла при выпуске плавки в ковш. Металл разливали сверху в слитки массой 130 кг диаметром 150 мм. Слитки нагревали в газовой печи до температуры 1175-1220°С и ковали при температуре не ниже 1050°С на прутки сечением 70×70 мм. Из прутков изготавливали продольные образцы на растяжение и ударный изгиб, которые подвергали термообработке закалкой в воду с 1050°С. Структуру металла изучали на металлографическом микроскопе Неофот-2. Фазовый состав стали определяли на рентгеновском дифрактометре ДРОН-3М. Механические испытания на растяжение по ГОСТ 1497-80 проводили на универсальной испытательной машине Тип 1958у-10, а испытания на ударный изгиб – на копре КМ-30 по ГОСТ 9454-80. Результаты химического анализа предлагаемой стали приведены в табл.1. Результаты испытаний представлены в табл.2. По результатам испытаний видно, что предлагаемая сталь обладает более высокими прочностными показателями при повышенных характеристиках пластичности и вязкости, что приведет к повышению долговечности изделий из этого металла.
Формула изобретения
1. Высокопрочная немагнитная коррозионностойкая композиционная сталь, содержащая углерод, кремний, марганец, хром, никель, азот, ниобий, молибден, ванадий, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит нитрид циркония при следующем соотношении компонентов, мас.%:
2. Сталь по п.1, отличающаяся тем, что она содержит нитрид циркония в виде частиц с наноразмерной дисперсностью.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||