Патент на изобретение №2358925
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) ЖАРОСТОЙКОЕ ПОКРЫТИЕ
(57) Реферат:
Изобретение относится к области машиностроения, а именно к жаростойким покрытиям для защиты деталей газотурбинных двигателей (камера сгорания, жаровые трубы, газоводы и др.) из жаропрочных сплавов от высокотемпературной газовой коррозии в процессе эксплуатации при температуре 1200°С. Техническим результатом изобретения является создание повышения температуроустойчивости, термостойкости, прочности сцепления покрытия. Жаростойкое покрытие, содержит SiO2, В2O3, Al2О3, BaO, CaO, MgO, TiO2, Cr2О3, минеральное комплексное соединение на основе SiO2, SiB4 и ZrO2 при следующем соотношении компонентов, мас.%: SiO2 – 21,0-36,6; В2О3 – 5,0-6,7; Al2O3 – 34,0-40,0; BaO – 6,3-7,0; CaO – 4,0-5,0; MgO – 0,9-2,0; TiO2 – 0,5-0,9; Cr2О3 – 3,5-5,0; SiB4 – 0,2-0,4; ZrO2 – 5,0-7,0; минеральное комплексное соединение на основе SiO2 – 4,0-5,0. Минеральное комплексное соединение на основе SiO2 включает следующие компоненты, мас.%: SiO2 – 56,25-58,05; Al2O3 – 34,3-35,1; CaO – 1,0-1,2; MgO – 1,0-1,1; K2O – 2,5-2,6; Na2O – 0,6-0,7; TiO2 – 1,6-1,8; SO3 – 0,15-0,25; Fe2О3 – 0,8-1,0 или SiO2 – 35,25-40,05; Al2O3 – 34,3-35,1; CaO – 1,0-1,2; MgO – 1,0-1,1; K2O – 2,5-2,6; Na2O – 0,6-0,7; TiO2 – 1,6-1,8; SO3 – 0,15-0,25; Fe2О3 – 0,8-1,0; SiB4 – 18,0-21,0. 3 табл.
Изобретение относится к материалам для защиты деталей газотурбинных двигателей (камера сгорания, стабилизаторы, створки, проставки и др.) из высокожаропрочных никелевых сплавов от высокотемпературной газовой коррозии в процессе эксплуатации при температуре 1200°С, используемых в авиационной технике и в машиностроении. Жаропрочные сплавы при высоких температурах имеют тенденцию к активному окислению, в связи с чем для повышения сопротивляемости сплавов высокотемпературной газовой коррозии эффективны защитные эмалевые покрытия, регламентирующие процесс окисления металла при высоких температурах. Необходимыми условиями эффективной защиты сплавов являются: высокие эксплуатационные характеристики покрытий при рабочей температуре, такие как термостойкость, температуроустойчивость, коррозионная стойкость, жаростойкость и др. Известно жаростойкое покрытие следующего химического состава, мас.%: SiO2 20,0-33,0, В2О3 4,0-5,0, Al2О3 7,0-8,0, ВаО 7,0-8,0, СаО 4,0-5,5, MgO 0,5-1,5, TiO2 1,0-2,2, Cr2О3 15,0-17,0, минеральное комплексное соединение на основе SiO2 5,0-6,0, полиметилфенилсилоксан 0,5-0,8, кремнийорганическая смола 11,5-12,5 ксилол 10,0-11,0, SiB4 1,5-2,5, при этом минеральное комплексное соединение на основе SiO2 содержит, мас.%: SiO2 56,25-58,05, Al2О3 34,3-35,1, СаО 1,0-1,2, MgO 1,0-1,1, К2О 2,5-2,6, Na2О 0,6-0,7, TiO2 1,6-1,8, SO3 0,15-0,25, Fe2О3 0,8-1,0 или SiO2 35,25-40,05, Al2О3 34,3-35,1, СаО 1,0-1,2, MgO 1,0-1,1, K2О 2,5-2,6, Na2О 0,6-0,7, TiO2 1,6-1,8, SO3 0,15-0,25, Fe2О3 0,8-1,0, SiB4 18,0-21,0 (Патент РФ 2273609). Недостатком известного покрытия является то, что оно работоспособно и имеет высокие эксплуатационные характеристики при температурах не выше 1000°С. Известно покрытие, имеющее следующий химический состав, мас.%: фритта А: SiO2 35-50, В2О 3-10, Al2О3 0-5 и/или Sb2О3, RO 0-5, R12О 15-30, TiO2 20-30, ZnO 0,1-10, Fe2О3 0-10, Cr2О3, NiO, MnO, CoO и/или CuO, фритта В: SiO2 40-60, B2О 3-10, Al2О3 10-25, RO 10-30, R12О 0,1-10, Fe2О3 0-10, Cr2О3, NiO, MnO, CoO и/или CuO, где RO включает MgO, СаО, SrO и/или ВаО, a R12О Na2О, К2О и/или Li2О, сырьевые материалы, выбранные из группы: кварц, полевой шпат, оксид циркония, волластонит, нефелин, сиенит и другие, а также необходимые количества добавок из группы Fe2О3, Сг2О3, NiO, MnO, CoO, CuO, TiO2 и их смесей (Патент ЕР 0948466). Известно жаростойкое покрытие следующего химического состава, мас.%: SiO2 20,0-36,0, В2О3 4,0-5,0, А12О3 5,0-6,0, ВаО 5,0-6,0, СаО 2,0-4,0, MgO 0,5-1,5, TiO2 1,5-2,5, Cr2О3 15,0-17,0, минеральное комплексное соединение на основе SiO2 5,0-6,0, Na2О 4,0-5,0, P2O5 1,0-2,0, полиметилфенилсилоксан 0,5-0,8,кремнийорганическая смола 11,5-13,2, ксилол, при этом минеральное комплексное соединение на основе SiO2 содержит, мас.%: SiO2 56,25-58,05, Al2О3 34,3-35,1, СаО 1,0-1,2, MgO 1,0-1,1, К2О 2,5-2,6, Na2О 0,6-0,7, TiO2 1,6-1,8, SO3 0,15-0,25, Fe2О3 0,8-1,0 или SiO2 35,25-40,05, Al2О3 34,3-35,1, СаО 1,0-1,2, MgO 1,0-1,1, К2О 2,5-2,6 Na2О 0,6-0,7, TiO2 1,6-1,8, SO3 0,15-0,25, Fe2О3 0,8-1,0, SiB4 18,0-21,0 (Патент РФ 2239616). Известные составы покрытий для жаропрочных никелевых сплавов обладают пониженными температуроустойчивостью, термостойкостью и прочностью сцепления со сплавами при рабочей температуре 1200°С. Наиболее близким аналогом, взятым за прототип, является жаростойкое покрытие состава, мас.%:
При этом минеральное комплексное соединение на основе SiO2 содержит, мас.%:
или
(Патент РФ п 2163897) Недостатком прототипа также является пониженная температуроустойчивость, термостойкость и прочность сцепления со сплавами при рабочей температуре 1200°С. Технической задачей изобретения является создание жаростойкого покрытия с повышенной температуроустойчивостью, термостойкостью и прочностью сцепления для жаропрочных никелевых сплавов при температуре эксплуатации 1200°С. Поставленная техническая задача достигается тем, что предложено жаростойкое покрытие, содержащее SiO2, В2О3, Al2О3, ВаО, СаО, MgO, TiO2, Cr2О3, минеральное комплексное соединение на основе SiO2, химического состава, мас.%:
или
которое дополнительно содержит SiB4 и ZrO2 при следующем соотношении компонентов, мас.%:
Авторами установлено, что введение борида кремния и оксида циркония при заявленном соотношении и содержании компонентов жаростойкого покрытия упрочняет структуру покрытия за счет образования боросиликатного стекла, армированного частицами борида кремния и оксида циркония, что повышает его температуроустойчивость, прочность сцепления, термостойкость при температуре эксплуатации 1200°С. Примеры осуществления Покрытие получали по шликерно-обжиговой технологии путем размола компонентов в шаровой мельнице в течение 50-52 ч с последующим нанесением полученного шликера на образцы сплава ВЖ171 и обжигом в электропечи при температуре 1200-1220°С. Составы предлагаемого покрытия 1, 2, 3 и прототипа 4 приведены в таблице 1. Составы минерального комплексного соединения на основе SiO2 приведены в таблице 2. Свойства предлагаемого покрытия и покрытия-прототипа приведены в таблице 3. Анализ результатов свидетельствует о том, что в сравнении с покрытием-прототипом на жаропрочном сплаве при температуре эксплуатации 1200°С у предлагаемого покрытия соответственно повысилась температуроустойчивость в 3 раза, прочность сцепления в 1,2 раза, термостойкость в 1,5 раза. Применение предлагаемого покрытия обеспечивает работоспособность деталей из жаропрочного сплава при температуре эксплуатации 1200°С, повышение надежности работы деталей с покрытием.
Формула изобретения
Жаростойкое покрытие, содержащее SiO2, В2O3, Al2О3, BaO, CaO, MgO, TiO2, Cr2О3, минеральное комплексное соединение на основе SiO2, химического состава, мас.%:
или
отличающееся тем, что оно дополнительно содержит SiB4 и ZrO2 при следующем соотношении компонентов, мас.%:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||