Патент на изобретение №2358038

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2358038 (13) C1
(51) МПК

C25B1/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 30.08.2010 – может прекратить свое действие

(21), (22) Заявка: 2007132092/15, 24.08.2007

(24) Дата начала отсчета срока действия патента:

24.08.2007

(46) Опубликовано: 10.06.2009

(56) Список документов, цитированных в отчете о
поиске:
US 4557815 А, 10.12.1985. SU 1791469 А1, 30.01.1993. RU 2010890 С1, 15.04.1994. RU 2032769 C1, 10.04.1995. KR 20030043817 А, 02.06.2003. US 4534837 А, 13.08.1985.

Адрес для переписки:

117465, Москва, ул. Генерала Тюленева, 35, кв.262, К.Н. Кошкину

(72) Автор(ы):

Кошкин Константин Николаевич (RU),
Семёнов Валерий Васильевич (RU),
Серопян Георгий Ваграмович (RU),
Урусов Казим Харшимович (RU)

(73) Патентообладатель(и):

Кошкин Константин Николаевич (RU),
Урусов Казим Харшимович (RU)

(54) СПОСОБ ГЕНЕРАЦИИ ВОДОРОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

(57) Реферат:

Изобретения относятся к области неорганической химии и могут быть использованы при производстве водорода и кремниевой кислоты из металлургического кремния. В герметичный металлический реактор 1 загружают измельченный металлургический кремний и раствор щелочи. Выделяющийся при этом водород по газопроводу 2 подается к топливной электрохимической батарее 3 или газовой горелке. Образующийся кремнекислый натрий -Na2SiO3 в виде водного раствора через коллектор 4 подается в электродиализатор 5, где под воздействием электрического тока происходит разделение ионов SiO3 и Na+ через мембраны 11 соответственно к аноду 9 и катоду 6. У анода 9 электродиализатора после выделения газообразного кислорода, выводимого через патрубок 10, освободившиеся ионы водорода, соединяясь с ионами SiO3, образуют осадок кремниевой кислоты Н2SiO3. На катоде 6 из воды выделяются молекулы газообразного водорода, выводимого из электродиализатора через патрубок 7, соединенный газопроводом 2, с топливной электрохимической батареей, а ионы Na+, перешедшие из средней камеры диализатора, соединяются с освободившимися анионами ОН и образуют раствор щелочи, который через жидкостной коллектор возвращается в реактор 1. Блок 12 согласования количества производимого водорода в реакторе 1 в зависимости от изменения концентрации раствора щелочи реагирует на снижение мощности, получаемой в топливной электрохимической батарее 3, и подает сигнал на исполнительный элемент 13 регулирования плотности тока на электродах 6 и 9 электродиализатора 5. Изобретения позволяют снизить себестоимость получаемого водорода и получить сырье для высокочистого кремния. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к производству водорода, кремниевой кислоты из металлургического кремния. Изобретение может быть использовано при изготовлении составов для электрохимических генераторов и термогенераторов (газовых горелок, устройств газосварки), в качестве горючего вещества, использующих водород.

Известен способ получения водорода путем взаимодействия дисперсного алюминия с водой (Пат. RU 2278077 С1 от 20.06.06) при нагреве и компремировании зоны взаимодействия.

Недостатком известного способа является использование в реакции алюминия, дефицитного и имеющего высокую рыночную цену при недостаточно большой эффективности получения водорода (из 1 килограмма алюминия теоретически, при различных условиях, получается 110-115 граммов водорода).

Известен также способ получения водорода при химическом взаимодействии кремния со слабыми растворами щелочей (Справочник металлурга по цветным металлам, под редакцией Н.Н.Мурача, М., 1953 г., т.1, стр.1064), причем для этих целей рекомендуется применять самую низкокачественную, а соответственно самую дешевую марку Кр3, так называемого металлургического кремния, получаемого карботермическим методом в неограниченных количествах на отечественных и зарубежных предприятиях. Рыночная цена кремния этой марки более чем в два раза ниже цены алюминия, используемого в прототипе для этих же целей. Из-за того, что валентность кремния (IV) больше валентности алюминия (III) и он, в отличие от алюминия, не образует гидроокисей, из 1 килограмма кремния, по вышеуказанной реакции, образуется более 140 граммов водорода. Недостатком указанного способа является то, что продукт реакции взаимодействия кремния со щелочью – водный раствор кремнекислой соли – не имеет рыночной востребованности в качестве товарной продукции и требует утилизации с соответствующими экономическими затратами на сбор, хранение, транспортирование и переработку. К недостаткам также относится то, что в известном генераторе водорода не имеется возможности регулирования скорости его образования, а соответственно мощности получаемого тепла или электричества при преобразовании водорода в энергию.

Известен также способ получения водорода путем взаимодействия растворов щелочи с кремнием по реакции

Si+2NaOH+H2O=NaSiO3+2H2

(Пат. Франции 1604678, кл C01B, 1972 г.).

Указанный способ является наиболее близким по технической сущности и достигаемому эффекту к заявляемому техническому решению и принят за прототип. Недостатком указанного способа является необходимость непрерывной подачи в зону реакции раствора щелочи.

Целью предлагаемого технического решения является устранение указанного недостатка.

Поставленная цель может быть достигнута путем включения в процесс получения водорода по реакции химического взаимодействия кремния с раствором щелочи с получением водорода и соли кремниевой кислоты. Полученный водород подают к топливной электрохимической батарее или газовой горелке, а водный раствор соли кремниевой кислоты – в электродиализатор, где под воздействием электрического тока на аноде выделяется газообразный кислород, осадок кремниевой кислоты и вода, а на катоде – газообразный водород, подаваемый к топливной электрохимической батарее, и раствор щелочи. Причем концентрация щелочи близка к концентрации исходного раствора в зоне ее реакции с кремнием. Образующаяся щелочь подлежит возврату в реактор в зону ее реакции с кремнием, что компенсирует ее расход при этом взаимодействии, обеспечивая непрерывность процесса. Газы, водород и кислород из диализатора подаются в газовую горелку или к топливной электрохимической батарее для их последующего преобразования в тепловую или электрическую энергию, что частично компенсирует энергозатраты на проведение процесса электродиализа. Полученный у анода осадок кремниевой кислоты, имеющий вследствие электродиализной очистки на мембранах высокую чистоту (до 99,99%), является остродефицитным сырьем для получения высокочистого кремния, используемого в полупроводниковой и электронной промышленности. Образующаяся в анолите кремниевая кислота подлежит реализации предприятиям, специализирующимся в выпуске монокристаллов полупроводникового кремния. Плотность тока на электродах электродиализатора регулируют в диапазоне 50-100 А/м2.

Регулирование скорости получения водорода осуществляется путем изменения скорости циркуляции растворов кремнекислой соли и щелочи через контур: «реактор генерации водорода – электродиализатор – реактор генерации водорода». Т.к. скорость образования водорода в этом процессе в основном зависит от концентрации водного раствора щелочи, то ее изменение приводит к увеличению или уменьшению количества образуемого водорода в единицу времени.

Устройство для получения водорода

Известные устройства для получения водорода – электролизеры (например, патент РФ 2207234 от 01.02.02) реализуют электрохимическую реакцию разложения воды на кислород и водород под воздействием электрического тока. Указанные устройства имеют недостаток – необходимость их подключения к внешнему источнику электроэнергии. Такого недостатка лишены устройства, реализующие химическое взаимодействие реагентов, в результате которого выделяется газообразный водород.

Наиболее близким по технической сущности и достигаемому эффекту к заявляемому устройству является принятый за прототип генератор водорода, описанный патенте 1604678 (Франция) C01B (1972 г.).

Известное устройство выполнено в виде герметичного металлического реактора, снабженного выпускным патрубком для выхода водорода. Недостатком известного технического решения является то, что продукты реакции, остающиеся после ее проведения, не имеют прямой востребованности в промышленности и требуют дополнительных затрат для их утилизации, что сказывается на конечной цене вырабатываемого газа. Недостатком указанного устройства является также отсутствие возможности регулирования скорости образования водорода.

Целью предлагаемого технического решения является расширение технических возможностей генераторов водорода, использующих реакцию взаимодействия кремния со щелочью, путем их дополнительного оснащения устройствами очистки и переработки продуктов реакции в востребованную промышленностью товарную продукцию, например сырье для получения высокочистого полупроводникового или электронного кремния, используемого в электронике и солнечных преобразователях энергии.

Сущность предлагаемого устройства для получения водорода и способ генерации водорода при его помощи поясняются на блок-схеме (см. чертеж).

Устройство для получения водорода содержит реактор (1) для обработки измельченного кремния раствором щелочи, газопровод (2) для подачи образующегося водорода к топливной электрохимической батарее (3) или газовой горелке и коллектор (4) отвода соли кремниевой кислоты. Реактор посредством коллектора (4) отвода соли кремниевой кислоты соединен с электродиализатором (5), у катода (6) которого размещен выпускной патрубок (7) для отвода образующегося в католите водорода, соединенный водородным коллектором (2) с топливной электрохимической батареей (3), и выпускной коллектор (8) отвода раствора щелочи и возврата ее в реактор (1) получения водорода, у анода размещен патрубок (10) для отвода образующегося кислорода, причем коллектор отвода соли кремниевой кислоты от реактора и коллектор отвода щелочи от электродиализатора образуют контуры циркуляции жидких реагентов.

Электродиализатор дополнительно содержит автоматический блок (12) согласования количества производимого в реакторе водорода в зависимости от изменения концентрации щелочи в растворе, исполнительным элементом которого является регулятор (13) плотности тока на электродах электродиализатора.

Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о ее соответствии критерию «новизна». Для проверки соответствия заявленного изобретения критерию «изобретательский уровень» проведен дополнительный поиск известных технических решений с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного технического решения. Установлено, что заявленное техническое решение не следует явным образом из известного уровня техники. Следовательно, заявленное изобретение соответствует критерию «изобретательский уровень». Сущность изобретения подтверждена примером практической реализации способа.

Пример реализации способа получения водорода при помощи предлагаемого устройства.

В герметичный металлический реактор (1) загружается измельченный до размеров фрагментов 5-10 мм металлургический кремний с содержанием основного продукта 99,5% и заливается 30% водный раствор натриевой щелочи (NaOH). Выделяющийся при этом водород по газопроводу (2) подается к топливной электрохимической батарее (3) или газовой горелке. Образующийся кремнекислый натрий (Na2SiO3) в виде водного раствора через коллектор (4) подается в электродиализатор (5), где под воздействием электрического тока происходит ионное разделение раствора соли: ионов (SiO3) и (Na+) через мембраны (11) соответственно к аноду (9) и катоду (6). Благодаря мембранам (11) электродиализатора (5) осуществляется очистка кремнекислого натрия от примесей до возможной чистоты 99,99% вес. У анода (9) электродиализатора после выделения газообразного кислорода, выводимого через патрубок (10), освободившиеся ионы водорода, соединяясь с ионами (SiO3), образуют осадок кремниевой кислоты Н2SiO3. На катоде (6) из воды выделяются молекулы газообразного водорода, выводимого из электродиализатора через патрубок (7), соединенный газопроводом (2) с генератором энергии (топливной электрохимической батареей), а ионы (Na+), перешедшие из средней камеры диализатора, соединяются с освободившимися анионами (ОН) и образуют раствор щелочи, который через жидкостной коллектор возвращается в реактор (1).

Блок (12) согласования количества производимого водорода в реакторе его получения (1) в зависимости от изменения концентрации раствора щелочи реагирует на снижение мощности, получаемой в топливной электрохимической батарее (3), и подает сигнал на исполнительный элемент (13) регулирования плотности тока на электродах (6, 9) электродиализатора (5). При повышении плотности тока скорость ионного разделения кремнекислой соли увеличивается, следовательно, увеличивается количество возвращаемой в реактор для генерации водорода (1) щелочи с исходной концентрацией. Величина плотности тока на электродах электродиализатора регулируется в диапазоне 50-100 А/м2. При плотности тока меньше значений указанного диапазона количество образуемой щелочи не успевает компенсировать ее расход в генераторе водорода, при плотностях тока выше указанного значения в электродиализаторе возникает значительное резистивное тепло, снижающее эффективность его работы.

На основании вышеизложенного можно сделать вывод, что заявленный способ получения водорода и устройство для его осуществления могут быть реализованы на практике с достижением заявленного технического результата, т.е. они соответствуют критерию «промышленная применимость».

Формула изобретения

1. Способ генерации водорода, включающий обработку в реакторе измельченного кремния раствором щелочи с получением водорода и соли кремниевой кислоты, отличающийся тем, что полученный водород подают к топливной электрохимической батарее или газовой горелке, а водный раствор соли кремниевой кислоты – в электродиализатор, где под воздействием электрического тока на аноде выделяются газообразный кислород и осадок кремниевой кислоты, а на катоде – газообразный водород, подаваемый к топливной электрохимической батарее, и раствор щелочи, возвращаемый в реактор.

2. Способ по п.1, отличающийся тем, что плотность тока на электродах электродиализатора регулируют в диапазоне 50-100 А/м2.

3. Устройство для получения водорода, содержащее реактор для обработки измельченного кремния раствором щелочи, газопровод для подачи образующегося водорода к топливной электрохимической батарее или газовой горелке и коллектор отвода соли кремниевой кислоты, отличающееся тем, что реактор посредством коллектора отвода соли кремниевой кислоты соединен с электродиализатором, у катода которого размещен выпускной патрубок для отвода образующегося водорода, соединенный коллектором с топливной электрохимической батареей, и выпускной коллектор отвода раствора щелочи и возврата ее в реактор получения водорода, у анода размещен патрубок для отвода образующегося кислорода, причем коллектор отвода соли кремниевой кислоты от реактора и коллектор отвода щелочи от электродиализатора образуют контуры циркуляции жидких реагентов.

4. Устройство по п.3, отличающееся тем, что электродиализатор дополнительно содержит автоматический блок согласования количества производимого в реакторе водорода в зависимости от изменения концентрации щелочи в растворе, исполнительным элементом которого является регулятор плотности тока на электродах электродиализатора.

РИСУНКИ

Categories: BD_2358000-2358999