Патент на изобретение №2358004
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ОЧИСТКИ НЕФТИ, ГАЗОКОНДЕНСАТА И НЕФТЯНЫХ ФРАКЦИЙ ОТ МЕРКАПТАНОВ
(57) Реферат:
Изобретение относится к способу очистки нефти, газоконденсата и нефтяных фракций от меркаптанов, а именно к катализаторам окислительной демеркаптанизации указанных продуктов с использованием гомогенных систем на основе переходных металлов. Изобретение касается способа очистки нефти, газоконденсата и нефтяных фракций от меркаптанов путем каталитической бесщелочной жидкофазной окислительной демеркаптанизации при температуре 20-50°С с использованием в качестве катализатора гомогенной жидкой композиции, содержащей 15-20 вес.% хлорида или бромида меди (II), 30-50 вес.% спирта С1-С3 или смеси указанных спиртов, 15-45 вес.% сольватирующей органической добавки из ряда алкилсульфоксидов и алкиламидов линейного или циклического строения, остальное до 100% – вода. 2 табл.
Изобретение относится к способам очистки нефти, газоконденсата и нефтяных фракций от меркаптанов, конкретно – к катализаторам окислительной демеркаптанизации указанных продуктов с использованием гомогенных систем на основе переходных металлов. Удаление дурно пахнущих, токсичных и обладающих коррозионной активностью меркаптанов – необходимое условие использования нефтяных фракций в качестве топлива или в производстве химической продукции. Для удаления меркаптанов без использования дорогой и технологически сложной гидроочистки применяют каталитическое окисление с образованием нетоксичных и не имеющих сильного запаха органических дисульфидов, т.н. окислительная демеркаптанизация (ОДМ): 2RSH+1/2O2RSSR+H2О Обычно окисление проводят кислородом или воздухом при комнатной или повышенной температуре в присутствии катализатора на основе переходного металла. Широкое распространение получил, в частности, т.н. MEROX-процесс, разработанный фирмой UOP. На Тенгизском нефтяном месторождении (Казахстан) реализован сходный процесс ОДМ-ДМС-1, разработанный ГУП ВНИИУС (РФ, г.Казань). Основными недостатками этого метода являются необходимость использования водной щелочи, большое количество требующих очистки сточных вод и другие осложняющие факторы. Известен ряд катализаторов ОДМ, активных только в присутствии водных щелочей. В большинстве подобных каталитических композиций предполагается использование фталоцианина кобальта (например, Европейский патент 394571, Патент ФРГ 3008284 и др.). Для повышения стабильности и активности каталитической системы на основе фталоцианинов в ходе каталитического процесса можно использовать водно-щелочные растворы, содержащие полярные органические добавки, такие как первичные и вторичные водорастворимые амины, алкиламиды и их смеси (Российский патент 2224006, 2004)). Известен способ очистки нефтяного сырья окислением в водном растворе щелочи при нагревании в присутствии фталоцианинового катализатора и диэтиленгликоля и триэтиленгликоля (а.с. СССР 823418, 1981). Скорость окисления меркаптанов в присутствии этих добавок возрастает в 1,2-2 раза. Описан процесс демеркаптанизации и катализатор окисления меркаптанов в водном растворе щелочи при нагревании на основе фталоцианинового катализатора с полярными добавками, в качестве которых используют бромиды металлов переменной валентности I, VI, VII групп Периодической системы или их комплексы с моноэтаноламином. Процесс проводят при нагревании и давлении до 100 атм (а.с. СССР 3513069, 1974), что усложняет технологию. Известен способ ОДМ, осуществляемой путем окисления меркаптанов кислородом воздуха в присутствии хелатных комплексов переходного металла (Со, Fe, Cu, Ni, Mn) с полидентантным лигандом из класса амидов, в частности из числа аминокарбоксипиридинов (патент Франции 2573087). Основным недостатком метода с использованием такого катализатора является высокая стоимость его компонентов. Известен катализатор очистки нефтяного сырья, содержащий соли металла переменной валентности (никеля, марганца, кобальта, меди или железа) или его комплекса с пирофосфатом или аммиаком в сочетании с вторичными или третичными аминами или аминоспиртами (Российский патент 2167187, 2001). Основным недостатком указанного способа является необходимость использования водной щелочи и высокий расход азотсодержащего реагента. Предложены катализаторы ОДМ на основе комплексов меди с тетрациантиофенолом или тетрациандитиином (патент Франции 2591610). Основным недостатком таких каталитических систем является высокая стоимость компонентов. Наиболее близким к описываемому по достигаемому результату является способ, описанный в патенте США 3409543, 1966. Согласно патенту для очистки нефтяных фракций предложен катализатор на основе сульфофталоцианина кобальта и ванадия и щелочного раствора, содержащего полярные органические растворители из группы диалкилсульфоксидов, аминоспиртов, аминогидроксиловых эфиров, алкиламинов и алкиламидов. Недостатком способа является сложность технологии, связанная с использованием в составе катализатора дорогих компонентов, трудностью его получения и необходимостью проведения процесса в присутствии водной щелочи. Целью предлагаемого изобретения является упрощение технологии процесса за счет понижения стоимости катализатора и отказа от использования водной щелочи. Последнее позволит отказаться от сложных операций по отделению и очистке стоков и обеспечит значительное уменьшение коррозии оборудования. Поставленная задача достигается путем использования гомогенной каталитической композиции, содержащей хлорид или бромид меди (II), сольватирующие органические добавки из ряда алкилсульфоксидов или алкиламидов линейного и циклического строения, спирт (C1-С3) и воду. Катализатор хорошо растворяется в нефтяном сырье без изменения цветового показателя, активно окисляет меркаптаны и сероводород кислородом воздуха при температуре 20-50°С и атмосферном давлении. Все указанные компоненты каталитической композиции одинаково необходимы, поскольку, например, замена галогенида меди на другую соль (нитрат, сульфат, стеарат и т.д.) приводит к потере активности катализатора. Отказ от использования сульфоксида или амида резко снижает эффективность катализатора и нефтяное сырье приобретает темную окраску уже в первый час реакции. Если каталитическая композиция не содержит спирт, то резко уменьшается ее растворимость в субстрате. Удаление воды из катализатора приводит к образованию нерастворимого осадка – комплекса меди с сульфоксидом или амидом. Таким образом, предлагается новый способ окислительной бесщелочной демеркаптанизации нефти, газоконденсата или нефтяных фракций с использованием гомогенного катализатора указанного выше состава, получаемого путем растворения хлорида или бромида меди в водно-спиртовом растворе, содержащем 20-30 – вес.% сольватирующей добавки. Изобретение иллюстрируется примерами 1-2. Сравнительные примеры 3-5 иллюстрируют невозможность достижения поставленной цели в случае отклонения состава катализатора от определенного в формуле предлагаемого изобретения. Приготовление катализатора Пример 1 В плоскодонную колбу на 200 мл при комнатной температуре помещают 50 мл этилового спирта, 20 мл воды, 20 мл ДМСО и 15 г CuCl2·2Н2О. Содержимое колбы перемешивают с помощью магнитной мешалки до полного растворения хлорида меди. Полученный катализатор представляет собой зеленый прозрачный раствор. Получают катализатор А. Аналогичным образом получают катализаторы Б-Е. Пример Ж иллюстрирует возможность использования бромида меди вместо хлорида. В примере И вместо диметилсульфоксида использовали диэтилсульфоксид (ДЭСО). Состав и параметры процесса получения катализатора приведены в табл.1. Пример 2 Катализатор готовили, как в примере 1, вместо диметилсульфоксида использовали диметилформамид. Таким способом получают катализаторы К-М. В примере H вместо диметилформамида использовали диметилацетамид. В примере О в качестве сольватирующей добавки использовали N-метилпирролидон.
Испытание катализатора (А) В реактор с магнитной мешалкой, представляющий собой четырехгорлую плоскодонную колбу объемом 350 мл, изготовленную из молибденового стекла, снабженную дефлегматором, системой подачи воздуха или кислорода и стеклянной трубкой для отбора проб. В реактор помещали раствор додецилмеркаптана в изооктане (25 мл) с содержанием серы 0,18 вес.%, катализатор А (0,1 мл) и тефлоновый магнитный мешальник. Время реакции составляло 2 часа. За это время содержание серы уменьшалось до 0,001 вес.%. Отбор проб проводили с интервалом в 0,5 часа. Содержание меркаптанов определяли потенциометрическим титрованием по ГОСТ 17323-71. (Б) Испытание катализатора проводили, как в примере (А), но в качестве катализатора использовали смесь Ж из таблицы 1, содержащую бромид меди. Время реакции составляло 1,5 часа. За это время содержание серы уменьшалось до 0,001 вес.%. Аналогичным образом испытывают другие катализаторы. Результаты испытаний приведены в табл.2.
Пример 3 Процесс ведут, как в примере 2, но при приготовлении катализатора не используют органические сольватирующие добавки. Через 2 часа после начала работы содержание меркаптановой серы составляет 0,08 вес.%, конденсат приобретает темно-коричневый цвет. Пример 4. Процесс ведут, как в примере 2, но вместо хлорида меди при приготовлении катализатора используют сульфат меди (II). Полученная таким образом каталитическая композиция быстро расслаивается, а при добавлении ее в раствор додецилмеркаптана в изооктане образуется темный осадок. Через 5 часов работы концентрация меркаптановой серы составляет 0,07 вес.%. Пример 5 Процесс ведут, как в примере 2, но вместо хлорида меди при приготовлении катализатора используют стеарат меди (II). Полученный катализатор является гомогенным и не образует осадка, однако его активность невелика. Через 6 часов работы концентрация меркаптановой серы в изооктане составляет 0,06 вес.%.
Формула изобретения
Способ очистки нефти, газоконденсата и нефтяных фракций от меркаптанов путем каталитической бесщелочной жидкофазной окислительной демеркаптанизации при температуре 20-50°С с использованием в качестве катализатора гомогенной жидкой композиции, содержащей 15-20 вес.% хлорида или бромида меди (II), 30-50 вес.% спирта С1-С3 или смеси указанных спиртов, 15-45 вес.% сольватирующей органической добавки из ряда алкилсульфоксидов и алкиламидов линейного или циклического строения, остальное до 100% – вода.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||