Патент на изобретение №2163699

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2163699 (13) C1
(51) МПК 7
F17C9/02
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – прекратил действие

(21), (22) Заявка: 99114577/06, 02.07.1999

(24) Дата начала отсчета срока действия патента:

02.07.1999

(45) Опубликовано: 27.02.2001

(56) Список документов, цитированных в отчете о
поиске:
SU 1640493 А, 07.04.1966. RU 2042874 С1, 27.08.1995. RU 2067256 С1, 27.09.1996. US 5518140 А, 21.05.1966. US 5533340 А, 09.04.1996.

Адрес для переписки:

443086, г.Самара, Московское шоссе 34, СГАУ, патентный отдел

(71) Заявитель(и):

Самарский государственный аэрокосмический университет им.акад.С.П.Королева

(72) Автор(ы):

Довгялло А.И.,
Лукачев С.В.,
Романов И.Г.,
Россеев Н.И.,
Цибизов Ю.И.

(73) Патентообладатель(и):

Самарский государственный аэрокосмический университет им.акад.С.П.Королева

(54) ТОПЛИВНЫЙ БАЛЛОН


(57) Реферат:

Изобретение относится к технике хранения и распределения газов и жидкостей. Топливный баллон включает внешний сосуд высокого давления и внутренний сосуд без перепада давления, полость которого соединена с магистралью заправки и опорожнения, а в верхней части сообщена с полостью сосуда высокого давления. Внутренний сосуд выполнен с объемом, определенным из соотношения Vв PmaxVб/жRTmax, где Vв – объем внутреннего сосуда; Vб – общий суммарный объем полостей баллона; Pmax – максимально допустимое давление в баллоне; ж – плотность криогенной жидкости; R – газовая постоянная рабочего тела; Tmax – максимально допустимая температура баллона. На внешнюю поверхность внутреннего сосуда нанесена теплоизоляция, а сообщение между полостями сосудов выполнено в виде отверстий в верхней части внутреннего сосуда. В результате достигается возможность заправки баллона сжиженным и газообразным природным газом путем обычного компримирования. 2 ил.


Изобретение относится к технике хранения и распределения газов и жидкостей, а именно к сосудам для помещения, хранения газов в сжатом, сжиженном состоянии, и их выпуску из сосудов.

Преимущественной областью использования является применение баллона для газового моторного топлива транспортных средств, например автомобилей.

В технике известны различные сосуды, допускающие нахождение в них и жидкостей, и сжатых газов. Например, заявка N 96104418, МПК F 17 C 1/00, от 27.05.97, Бюл. N 15, описывает баллон для сжатого газа и жидкости.

К устройствам, предназначенным для нахождения в них сжатых и сжиженных газов, относятся и криогенные газификаторы, представляющие собой сосуды, состоящие из внутренней и внешней оболочек. Одно из устройств описано в изобретении согласно патенту РФ N 2042874, МПК F 17 C 19/02, от 27.08.95, Бюл. N 24.

Однако известные устройства не позволяют осуществлять длительное хранение без дренажа и расхода рабочего тела.

Наиболее близким из выявленных в доступных источниках информации аналогов является сосуд криогенного газификатора, сущность которого раскрыта в описании изобретения по а.с. N 1640493, МПК F 17 C 9/02, от 07.04.91, Бюл. N 13, “Криогенный газификатор”.

Прототип содержит внешний сосуд высокого давления, внутренний сосуд без перепада давления, полость которого соединена с магистралями заправки и опорожнения, а в верхней части сообщена с полостью сосуда высокого давления.

Прототип наиболее эффективен при интенсивной газификации криогенной жидкости, но при необходимости длительного безрасходного хранения жидкости, когда в результате теплопритоков происходит испарение и повышение давления, возникают ограничения его эксплуатационных возможностей, обусловленные предельно допустимыми уровнями давления. Средствами защиты в этом случае может служить дренаж или иное удаление части газообразного или жидкого рабочего тела, что означает его потери.

Кроме того, конструкция прототипа не предусматривает защиту от теплового удара и значительных температурных напряжений, особенно при его заправке криогенной жидкостью.

Таким образом, совокупность существенных признаков, характеризующая прототип, не позволяет получить технический результат, состоящий в возможности длительного хранения без дренажа и расхода криогенной жидкости, в частности сжиженного природного газа (СПГ).

Таким образом, поставлена задача – разработать такую конструкцию баллона, которая позволяет осуществить возможность длительного хранения, заправки и выдачи газа, причем как в сжиженном, так и в газообразном состоянии.

Поставленная задача решается за счет того, что в известном устройстве, содержащем внешний сосуд высокого давления, внутренний сосуд без перепада давления, полость которого соединена с магистралями заправки и опорожнения и в верхней части – с полостью внешнего сосуда высокого давления, согласно изобретению, внутренний сосуд выполнен с объемом, определенным из соотношения.

Vв Pmax Vб / ж R Tmax,
где Vв – объем внутреннего сосуда; Vб – общий суммарный объем полостей баллона; Pmax – максимально допустимое давление в баллоне; ж – плотность криогенной жидкости; R – газовая постоянная рабочего тела; Tmax – максимально допустимая температура баллона,
а на внешнюю поверхность внутреннего сосуда нанесена теплоизоляция, а сообщение между полостями сосудов выполнено в виде отверстий в верхней части внутреннего сосуда.

Например, для СПГ при допустимом давлении в баллоне не более 25 МПа (что типично для газобаллонных автомобилей, работающих на природном газе) доля объема полости внутреннего сосуда составляет величину 33 процента. При хранении СПГ в баллоне предложенной конструкции существенно возрастает время естественной газификации, при этом давление в сосуде всегда ниже предельно допустимого. При этом для устранения вторичного неблагоприятного воздействия перемещений и деформаций внутреннего сосуда и нанесенной на него теплоизоляции и вследствие этого изменения температуры и давления в полости внешнего сосуда целесообразно применение теплоизоляции в виде двух слоев: примыкающего к стенке внутреннего сосуда – газонепроницаемого и внешнего слоя – газопроницаемого, легкодеформируемого. Для уменьшения теплопритоков к СПГ и компенсации температурных деформаций верхняя часть внутреннего сосуда соединена с верхней частью наружного сосуда горловиной, выполненной в виде сильфона.

Технический результат совокупности существенных признаков предложенного изобретения состоит в обеспечении возможности заправки баллона как сжиженным, так и газообразным природным газом путем обычного компримирования, чем достигается его универсальность.

Кроме того наиболее нагруженный элемент конструкции баллона, т.е. внешний сосуд высокого давления, работает в благоприятном режиме, так как отсутствуют тепловые удары и значительные градиенты температуры. Даже при длительном хранении СПГ и его полной газификации практически исключено захолаживание стенок сосуда высокого давления ниже принятых в настоящее время уровней в – 50oC.

Важным для эксплуатации и ресурса баллона является то обстоятельство, что при наличии жидкой фазы во внутреннем сосуде, т.е. до тех пор пока не испарится вся жидкость, давление в баллоне будет значительно ниже максимально допустимого значения. Это означает, что при эксплуатации циклы нагружения баллона по давлению могут быть в несколько раз ниже, чем при заправке компримированием.

В заправленном СПГ баллоне происходят следующие физические процессы. За счет естественных теплопритоков жидкая фаза испаряется, давление в газовой полости начинает расти, и кипение жидкой фазы прекращается. При отборе (расходе) жидкой фазы (СПГ) и падении давления жидкость вновь закипает и, таким образом, давление в газовой полости баллона вновь повышается.

СПГ выдается из баллона в криогенно-жидком состоянии, после чего его газификация осуществляется во внешней системе подготовки топлива. Вытеснение жидкой фазы из внутреннего сосуда осуществляется давлением газовой фазы во внешнем сосуде. Выдача СПГ происходит по одной и той же магистрали заправки.

Таким образом, предложенное устройство характеризуется совокупностью существенных признаков, неизвестной из уровня техники.

Сущность изобретения поясняется чертежами, где на фиг. 1 представлен продольный разрез баллона для газового топлива, являющегося одним из примеров конкретного исполнения, а на фиг. 2 показана стенка внутреннего сосуда с теплоизоляцией.

Баллон состоит из внешнего сосуда высокого давления 1, внутреннего сосуда без перепада давления 2, внутри сосуда 2 размещен патрубок 3, соединенный со штуцерами заправки 4 и опорожнения 5. Верхняя часть внутреннего сосуда 2 соединена с верхней частью наружного сосуда горловиной, выполненной в виде сильфона 6, в верхней части которого расположены отверстия 7, сообщающие полости сосудов между собой. На наружную поверхность внутреннего сосуда 2 нанесена теплоизоляция 8, которая выполнена из газонепроницаемого слоя 9 и проницаемого слоя 10. Внутренний сосуд выполнен с объемом, определенным из соотношения
Vв Pmax Vб / ж R Tmax,
где Vв – объем внутреннего сосуда; Vб – общий суммарный объем полостей баллона; Pmax – максимально допустимое давление в баллоне; ж – плотность криогенной жидкости; R – газовая постоянная рабочего тела; Tmax – максимально допустимая температура баллона.

Работа устройства осуществляется следующим образом.

В случае заправки природным газом из газообразного состояния путем компримирования газ поступает из заправочной магистрали через штуцер 4 по патрубку 3 в полость внутреннего сосуда 2 и затем через отверстия 7 в полость внешнего сосуда 1. Выдача компримированного природного газа (КПГ) потребителю осуществляется через штуцер опорожнения 5 в обычном для сосудов высокого давления порядке.

При заправке сжиженным газом СПГ поступает через штуцер 4 по патрубку 3 и, вытесняя под давлением газовую фазу, заполняет объем внутреннего сосуда 2. За счет сжатия газовой фазы и частичного испарения СПГ давление в баллоне возрастает, что способствует подавлению кипения жидкой фазы.

При отборе жидкой фазы через магистраль опорожнения давление в баллоне снижается, жидкость закипает, то есть происходит ее частичная газификация, достаточная для вытеснения необходимого количества жидкой фазы СПГ в магистраль опорожнения и далее, например, к двигателю.

При длительном безрасходном и бездренажном хранении весь СПГ может испариться. Давление в обоих сосудах 1 и 2 возрастает до расчетного допустимого уровня Pmax, и дальнейшая работа баллона (хранение и выдача газа) происходит идентично тому, как это осуществляется при заправке КПГ.

Новый наиболее высокий технический результат при эксплуатации обусловлен влиянием отличительных признаков в совокупности существенных признаков, характеризующих устройство и проявляющих при этом новые свойства.

Таким образом, предложенный баллон промышленно применим, обладает новизной, изобретательским уровнем, осуществим и при реализации способен обеспечить более высокий технический результат, то есть соответствует критерию охраноспособности.

Предложенный баллон является универсальным, т.к. его конструкция позволит осуществлять заправку и работу баллона как на КПГ, так и на СПГ.

Формула изобретения


Топливный баллон, включающий внешний сосуд высокого давления и внутренний сосуд без перепада давления, полость которого соединена с магистралью заправки и опорожнения, а в верхней части сообщена с полостью сосуда высокого давления, отличающийся тем, что внутренний сосуд выполнен с объемом, определенным из соотношения
Vв PmaxVб/жRTmax,
где Vв – объем внутреннего сосуда;
Vб – общий суммарный объем полостей баллона;
Рmax – максимально допустимое давление в баллоне;
ж – плотность криогенной жидкости;
R – газовая постоянная рабочего тела;
Тmax – максимально допустимая температура баллона,
на внешнюю поверхность внутреннего сосуда нанесена теплоизоляция, а сообщение между полостями сосудов выполнено в виде отверстий в верхней части внутреннего сосуда.

РИСУНКИ

Рисунок 1, Рисунок 2


MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 02.07.2001

Номер и год публикации бюллетеня: 2-2003

Извещение опубликовано: 20.01.2003


Categories: BD_2163000-2163999