Патент на изобретение №2357066

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2357066 (13) C2
(51) МПК

E21B17/01 (2006.01)
C22C38/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 30.08.2010 – действует

(21), (22) Заявка: 2007105155/03, 12.02.2007

(24) Дата начала отсчета срока действия патента:

12.02.2007

(43) Дата публикации заявки: 10.09.2008

(46) Опубликовано: 27.05.2009

(56) Список документов, цитированных в отчете о
поиске:
RU 46031 U1, 10.06.2005. SU 346065 A1, 01.01.1972. SU 1617036 A1, 30.12.1990. SU 1673634 A1, 30.08.1991. RU 2038406 C1, 27.06.1995. RU 46290 U1, 27.06.2005. US 4585062 A, 29.04.1986. US 2004001966 A1, 01.01.2004. EP 0890653 A1, 13.01.1999.

Адрес для переписки:

109544, Москва, ул. Школьная, 35, оф.10, центр “ЮНТЭКС”

(72) Автор(ы):

Чуйко Александр Георгиевич (RU),
Чуйко Кирилл Александрович (RU),
Кузяев Фярит Фатихович (RU),
Швецов Андрей Юрьевич (RU)

(73) Патентообладатель(и):

Чуйко Александр Георгиевич (RU)

(54) НАСОСНО-КОМПРЕССОРНАЯ ТРУБА

(57) Реферат:

Изобретение относится к устройствам для добычи нефти, газа и газового конденсата из скважин, а именно к насосно-компрессорным трубам (НКТ). Техническим результатом является повышение коррозионной стойкости и износостойкости НКТ. На наружную поверхность НКТ наносят покрытие, выполненное в виде напыленного слоя, при этом покрытие включает в себя: углерод (С), молибден (Мо), кремний (Si), никель (Ni), медь (Cu), хром (Cr), бор (В), марганец (Mn), окись алюминия (Al2О3), железо (Fe), при следующем соотношении компонентов, мас.%: С – 1,3÷2,0; Мо – 4,0÷5,0; Si – 0,5÷1,5; Ni – 11÷20; Cu – 0,01÷0,50; Cr – 23÷32; В – 0,001÷0,1; Mn – 0,4÷1,2; Al2О3 – 0,1÷5; Fe – остальное. 1 ил.

Изобретение относится к устройствам для добычи нефти, газа и газового конденсата, преимущественно к насосно-компрессорным трубам, применяемым в процессе эксплуатации нефтяных и газовых скважин для транспортировки жидкостей и газов внутри обсадных колонн, а также для ремонтных и спускоподъемных работ.

Современное состояние нефтедобывающей промышленности характеризуется существенным ухудшением эксплуатационных условий скважинного оборудования.

Факторов, влияющих на работу установок электрических центробежных насосных (УНЦН) и связанных с ними насосно-компрессорных труб, очень много: начиная от конструкций скважины и насоса и заканчивая процессами, проходящими в самом пласту. Совокупность всех осложнений приводит к резкому снижению эффективности работы оборудования для добычи и транспортировки нефти и газа. В связи с этим становятся актуальными разработки, направленные на повышение показателей эффективности нефтегазодобывающего и транспортирующего оборудования.

К основным осложняющим факторам, приводящим к снижению эффективности работы нефтегазодобывающего и транспортирующего оборудования можно отнести: газ, вода, наличие механических примесей в добываемой из пласта жидкости, наличие в пластовой жидкости агрессивных веществ, в частности сероводорода, и т.д.

Вследствие того что безводный период эксплуатации скважин занимает малую часть от общего периода, влияние воды на работу нефтегазодобывающего оборудования, в том числе и на работу колонны насосно-компрессорных труб, начинается практически с момента начала работы скважины. Доля воды в пластовой жидкости в настоящее время в подавляющем большинстве месторождений достигает от 90 до 99%. Столь высокое содержание воды в пластовой жидкости приводит к целому ряду осложнений при эксплуатации скважин.

Высокая степень минерализации пластовой жидкости, повышенное содержание сероводорода в ней, а также наличие сульфатредуцирующих и других бактерий приводит к интенсивной коррозии нефтегазодобывающего и транспортирующего оборудования.

Сочетание воздействия высокой агрессивности пластовой жидкости и электрического тока при работе насосных установок приводит к возникновению электрохимической коррозии металла как самих насосных установок, так и колонны насосно-компрессорных труб. При этом зачастую скорость электрохимической коррозии значительно превышает скорость химической коррозии.

В процессе спуска и подъема колонны насосно-компрессорных труб происходит трение ее поверхности о поверхность обсадной колонны. Вследствие кривизны скважин и наличия стыков труб происходит интенсивный локальный износ поверхности насосно-компрессорных труб. Кроме того, при работе центробежной насосной установки, закрепленной на нижней части колонны насосно-компрессорных труб, возникает вибрация. Эта вибрация передается на всю колонну насосно-компрессорных труб. В результате вибрации происходит трение насосно-компрессорных труб об обсадную трубу. Все это приводит к абразивному износу поверхности насосно-компрессорных труб. Все это усиливает эффект коррозии насосно-компрессорных труб.

Защита от коррозии путем применения металлических покрытий является наиболее эффективной. При этом металлические покрытия должны обладать высокой плотностью, высокой адгезией, низким электрохимическим потенциалом по отношению к корпусу оборудования, высокой коррозионной стойкостью, высокой твердостью и износостойкостью, высокой эластичностью. Совокупность перечисленных свойств обеспечивает надежную коррозионную защиту покрытия в скважине.

В то же время, использование металлических покрытий, не отвечающих перечисленным требованиям, не обеспечивает надежной защиты от коррозии. Например, применение утолщенных и хрупких покрытий приводит к их растрескиванию и даже к отслаиванию. Малейших несплошностей покрытия (микротрещины, язвы, сквозные поры, дыры и т.д.) достаточно, чтобы началась интенсивная коррозия всего корпуса оборудования. При этом в зависимости от электрохимического потенциала процесс коррозии может быть еще более интенсивным по сравнению с оборудованием без металлического покрытия.

Известны технические решения, которые направлены на повышение коррозионной стойкости, износостойкости и, как следствие, повышение надежности нефтегазодобывающего и транспортирующего оборудования, в частности насосно-компрессорных труб (см. например, RU 46031 U1, 10.06).

В известном техническом решении, в частности, предлагается на наружную поверхность насосно-компрессорных труб наносить покрытие, выполненное в виде напыленного слоя на основе легированной стали, включающее в первом варианте Fe, Cr, Ni, Si, Мо, С, во втором варианте Cr, Ni, Si, В, С, в третьем варианте Fe, Cr, Мо в определенных соотношениях (мас.%), обеспечивающее повышение коррозионной стойкости поверхностным слоям.

Однако все эти технические решения не обеспечивают в достаточной степени повышение коррозионной стойкости, износостойкости, герметичности поверхностного слоя насосно-компрессорных труб.

Технической задачей, на решение которой направлено заявленное изобретение, является следующее:

1. Повышение коррозионной стойкости насосно-компрессорных труб.

2. Защита от электрохимической коррозии насосно-компрессорных труб.

3. Повышение износостойкости насосно-компрессорных труб.

4. Повышение стойкости к эрозионному износу насосно-компрессорных труб.

5. Повышение КПД оборудования для добычи и транспортировки нефти.

Поставленная задача решается следующим образом.

На наружную поверхность насосно-компрессорной трубы нанесено покрытие, выполненное в виде напыленного слоя, при этом покрытие включает в себя: углерод (С), молибден (Мо), кремний (Si), никель (Ni), медь (Cu), хром (Cr), бор (В), марганец (Mn), окись алюминия (Al2О3), железо (Fe), при следующем соотношении компонентов, мас.%: С – 1,3÷2,0, Мо – 4,0÷5,0, Si – 0,5÷1,5, Ni – 11÷20, Cu – 0,01÷0,50, Cr – 23÷32, В – 0,001÷0,1, Mn – 0,4÷1,2, Al2О3 – 0,1÷5, Fe – остальное.

Изобретение поясняется чертежом, где показан фрагмент насосно-компрессорной трубы.

На указанной фигуре обозначены следующие позиции:

1) насосно-компрессорная труба;

2) поверхность насосно-компрессорной трубы, на которую наносится покрытие;

3) покрытие насосно-компрессорной трубы.

Покрытие с указанными ингредиентами, благодаря своей сверхвысокой плотности и исключительной коррозионной стойкости, надежно защищает проточную часть насосно-компрессорной трубы от коррозии и износостойкости, в частности от воздействия сероводорода.

Упомянутое покрытие обладает комплексом необходимых свойств для надежного обеспечения высокой герметичности колонны насосно-компрессорных труб в течение длительного периода ее эксплуатации. К этому комплексу свойств покрытия относятся:

1) высокая гидроабразивная износостойкость;

2) высокая абразивная износостойкость;

3) высокая стойкость к эрозионному износу;

4) высокая коррозионная стойкость;

5) высокая стойкость к электрохимической коррозии;

6) высокая теплостойкость покрытия;

7) высокая адгезия покрытия;

8) высокая когезия покрытия;

9) высокая плотность покрытия;

10) высокая эластичность покрытия.

Вышеперечисленный комплекс свойств предлагаемого покрытия позволяет обеспечить надежную работу колонны насосно-компрессорных труб в особо тяжелых реальных условиях ее эксплуатации с учетом вибрации колонны. В процессе спуска и подъема колонны насосно-компрессорных труб обеспечивается идеальная герметичность покрытия. Это позволяет продлить срок эксплуатации колонны насосно-компрессорных труб в три-пять раз по отношению к известным аналогам защитных покрытий.

Обоснование химического состава покрытия и процентного содержания легирующих элементов

Углерод – обеспечивает повышение твердости покрытия. Увеличение содержания углерода в покрытии выше верхнего заданного покрытия приводит к охрупчиванию покрытия и соответственно к появлению микротрещин в покрытии. В результате нарушается герметичность покрытия. Снижение содержания углерода ниже заданного нижнего предела влечет за собой снижение твердости и износостойкости покрытия, что также (при спуске и подъеме колоны НКТ) приводит к нарушению герметичности покрытия.

Молибден – повышает коррозионную стойкость покрытия в среде сероводорода и увеличивает твердость покрытия. С уменьшением процентного содержания молибдена ниже нижнего заданного предела приводит к существенному снижению коррозионной стойкости покрытия в среде сероводорода. Увеличение содержания молибдена выше верхнего заданного предела влечет к образованию карбидной фазы и охрупчиванию покрытия.

Кремний – увеличивает жидкотекучесть материала покрытия в процессе его нанесения. В результате введения кремния в покрытие обеспечивается хорошая равномерность покрытия, высокий коэффициент использования материала, высокая плотность покрытия. Снижение содержания кремния ниже нижнего заданного предела приводит к существенному снижению коэффициента использования покрытия и ухудшению его равномерности. Повышение содержания кремния выше верхнего заданного предела чрезмерно повышает жидкотекучесть материала покрытия в процессе его нанесения на изделие. Это, в свою очередь, приводит к стеканию материала с поверхности изделия и, соответственно, к существенному ухудшению равномерности нанесенного покрытия и его сплошности.

Никель – повышает коррозионную стойкость и механические свойства материала покрытия. Никель в сочетании с медью, молибденом, хромом и железом обеспечивает очень высокую коррозионную стойкость. Снижение содержания никеля ниже нижнего заданного предела приводит к существенному увеличению скорости коррозии в среде сероводорода. Так (по экспериментальным данным) уменьшение содержания никеля до 7-8% приводит к увеличению скорости коррозии от 3 до 5 раз. При увеличении содержания никеля выше верхнего заданного предела эффект повышения коррозионной стойкости покрытия снижается.

Хром – главный химический элемент, повышающий коррозионную стойкость покрытия. Снижение содержания хрома ниже нижнего заданного предела не обеспечивает достаточной коррозионной стойкости покрытия в среде сероводорода. С повышением же содержания хрома выше верхнего заданного предела увеличение коррозионной стойкости происходит менее заметно. Однако при этом наблюдается существенное охрупчивание покрытия за счет образования карбида хрома.

Бор – значительно повышает износостойкость и твердость покрытия. В указанном диапазоне содержания бора обеспечивается оптимальное сочетание износостойкости и твердости покрытия без эффекта охрупчивания покрытия.

Марганец – раскисляет материал покрытия в процессе распыления порошка, при этом снижается температура плавления порошка и, как следствие, достигается большая эластичность покрытия, повышается адгезия покрытия и его плотность. Нижний предел содержания марганца обусловлен необходимостью удовлетворительного раскисления материала покрытия. При увеличении содержания марганца выше верхнего заданного предела из-за высокого содержания углерода приводит к охрупчиванию покрытия.

Алюминий – снижает электрохимический потенциал покрытия по отношению к корпусу изделия, в результате улучшается стойкость покрытия. Использование смеси металлического порошка с Al2О3 обеспечивает в процессе напыления интенсивную бомбардировку напыляемой поверхности, ее упрочнение наклепом непосредственно в процессе нанесения покрытия и тем самым достигается значительное повышение адгезии и когезии. Кроме того, частично внедренные в материал покрытия мелкие частицы Al2О3 повышают твердость и износостойкость покрытия. Нижний предел содержания Al2О3 обусловлен минимальным его содержанием в порошке, при котором обеспечивается надежная бомбардировка поверхности изделия с целью повышения адгезии. Верхний предел содержания Al2О3 обусловлен максимальной производительностью нанесения покрытия и максимальным коэффициентом использования материала.

Медь – повышает плотность покрытия (герметичность). Однако чрезмерное повышение содержания меди приводит к заметному усилению электрохимической коррозии.

Железо – основа.

Толщина рабочего слоя покрытия диктуется, с одной стороны, требуемым ресурсом по коррозионной стойкости и износостойкости, а с другой стороны, экономической целесообразностью. Чем большая требуется коррозионная стойкость покрытия и, соответственно, его ресурс, тем большая выбирается толщина покрытия. Для сред с низкой агрессивностью выбирается минимальная толщина покрытия.

Для обеспечения повышенной стойкости к электрохимической коррозии в особо агрессивных средах (с повышенным содержанием сероводорода) выбирается увеличенная толщина покрытия.

Вышеперечисленные факторы, вследствие значительного снижения скорости коррозии насосно-компрессорных труб, обеспечивают значительное увеличение наработки на отказ нефтегазодобывающего оборудования и, следовательно, снижают число ремонтов скважин, количество спусков и подъемов оборудования.

Формула изобретения

Насосно-компрессорная труба, на наружную поверхность которой нанесено покрытие, выполненное в виде напыленного слоя, отличающаяся тем, что покрытие включает в себя: С, Мо, Si, Ni, Cu, Cr, В, Mn, Al2О3, Fe, при следующем соотношении компонентов, мас.%: С – 1,3÷2,0; Мо – 4,0÷5,0; Si – 0,5÷1,5; Ni – 11÷20; Cu – 0,01÷0,10; Cr – 23÷32; В – 0,001÷0,1; Mn – 0,4÷1,2; Al2О3 – 0,1÷5; Fe – остальное.

РИСУНКИ

Categories: BD_2357000-2357999