Патент на изобретение №2356097

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2356097 (13) C1
(51) МПК

G08B17/107 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 30.08.2010 – действует

(21), (22) Заявка: 2008112088/09, 01.04.2008

(24) Дата начала отсчета срока действия патента:

01.04.2008

(46) Опубликовано: 20.05.2009

(56) Список документов, цитированных в отчете о
поиске:
US 6437698 А, 20.02.2002. US 5705988 А, 06.01.1998. US 5691704 А, 25.11.2007. RU 2280286 C1, 20.07.2006. RU 2001122290 A1, 10.12.2007.

Адрес для переписки:

124482, Москва, Зеленоград, К-317, а/я 44, ООО “Юник Ай Сиз”

(72) Автор(ы):

Адамов Юрий Федорович (RU),
Куликов Константин Евгеньевич (RU),
Куцов Александр Сергеевич (RU),
Сомов Олег Анатольевич (RU)

(73) Патентообладатель(и):

Общество с ограниченной ответственностью ООО “Юник Ай Сиз” (RU)

(54) ДЫМОВОЙ ОПТИКО-ЭЛЕКТРОННЫЙ ПОЖАРНЫЙ ИЗВЕЩАТЕЛЬ

(57) Реферат:

Изобретение относится к вычислительной технике, а именно к устройствам, выполняющим функцию обнаружения на ранней стадии возгораний, сопровождающихся появлением дыма в закрытых помещениях офисов, магазинов, банков, складских помещений, жилых домов, учреждений и предприятий. Техническим результатом является снижение времени определения пожара и повышение чувствительности корректировки порога срабатывания. Для достижения технического результата цепь контроля выполняют на базе аналого-цифрового преобразователя, преобразующего аналоговый сигнал, приходящий через усилитель с фотодетектора в цифровой, и алгоритмического блока, управляемого блоками контроля питания и сброса питания. Устройство снабжено тестовым блоком и кнопкой «тест». Алгоритмический блок анализирует приходящий с аналого-цифрового преобразователя цифровой сигнал и управляет сигнальным индикатором и блоком формирования сигнала тревоги, а также с помощью цепи управления инфракрасным излучателем управляет инфракрасным излучателем. 2 ил.

Изобретение относится к вычислительной технике, а точнее к устройствам, выполняющим функцию обнаружения на ранней стадии возгораний, сопровождающихся появлением дыма в закрытых помещениях офисов, магазинов, банков, складских помещений, жилых домов, учреждений и предприятий.

Изобретения такого типа имеют исключительную важность. От качества таких устройств зависит эффективность работы всей системы пожарной сигнализации в целом.

Своевременность и точность определения пожара зависят от чувствительности таких устройств, при этом прибор должен быть компактным, маломощным и иметь небольшую конечную стоимость.

Известные аналоги – устройства обнаружения пожара [1] и [2]. Недостатком указанных устройств является их техническая реализация в виде навесных узлов, существенно удорожающих процесс и качество конструкции.

Наиболее близким техническим решением является устройство обнаружения пожара [3], содержащее: корпус, имеющий отверстия, обеспечивающие свободный ток воздуха, состоящий из нижней и верхней частей; дымовой сенсор, включающий в себя инфракрасный излучатель, цепь управления инфракрасным излучателем и фотодетектор; дымовую камеру, расположенную в нижней части корпуса, имеющую барьер, который не допускает прямого прохождения сигнала от инфракрасного излучателя к фотодетектору, и содержащую оптический элемент, обеспечивающий нужную интенсивность излучения и фокусировки; интегральную микросхему, расположенную в верхней части корпуса таким образом, чтобы радиус действия фотодетектора был в пределах дымовой камеры, и включающую в себя цепь контроля, состоящую из усилителя, компараторов, счетчиков и логического блока, анализирующую сигнал с фотодетектора и формирующую сигнал тревоги в случае обнаружения дыма, цепь управления инфракрасным излучателем, блок контроля питания, блок сброса питания, блок формирования сигнала тревоги, тестовый блок и фотодетектор; сигнальный индикатор, располагающийся на корпусе.

Однако указанное устройство обнаружения пожара [3] имеет следующие недостатки: продолжительное время определения пожара (10 сек) и низкую чувствительность корректировки порога срабатывания для компенсации запыленности (блоки сравнения реализованы на базе компараторов).

Техническим результатом настоящего изобретения является сокращение времени определения пожара и повышение чувствительности корректировки порога срабатывания для компенсации запыленности за счет модифицирования цепи контроля, анализирующей сигнал с фотодетектора и формирующей сигнал тревоги в случае обнаружения дыма, путем замены в цепи контроля блоков сравнения, счетчиков и логического блока на аналогово-цифровой преобразователь и алгоритмический блок (микроконтроллер) с улучшенным методом обработки данных.

Указанный технический результат достигается за счет того, что в известном устройстве содержащем корпус с отверстиями и расположенный на корпусе сигнальный индикатор, корпус состоит из нижней и верхней частей, расположенные в верхней части, инфракрасный излучатель и интегральную микросхему, включающую в себя цепь управления инфракрасным излучателем, фотодетектор, блок контроля питанием, блок сброса питания, блок формирования сигнала тревоги, тестовый блок и цепь контроля, дымовую камеру, расположенную в нижней части корпуса, имеющую барьер, который не допускает прямого прохождения сигнала от инфракрасного излучателя к фотодетектору, предложено цепь контроля выполнить на базе аналого-цифрового преобразователя, преобразующего аналоговый сигнал, приходящий через усилитель с фотодетектора в цифровой, и алгоритмического блока, управляемого блоками контроля питания, сброса питания, тестовым блоком и кнопкой «тест», указанный алгоритмический блок анализирует приходящий с аналого-цифрового преобразователя цифровой сигнал и управляет сигнальным индикатором и блоком формирования сигнала тревоги, а также с помощью цепи управления инфракрасным излучателем управляет инфракрасным излучателем.

Изобретение иллюстрируется графическими материалами.

На Фиг.1 приведен корпус устройства обнаружения пожара в разрезе, где 1 – нижняя часть корпуса, 2 – интегральная микросхема, 3 – фотодетектор, 5 – внешний инфракрасный излучатель. Стрелками показано направление тока воздуха. Верхняя крышка корпуса удалена для наглядности.

На Фиг.2 приведена интегральная микросхема, входящая в состав изобретения, где 2 – сама интегральная микросхема, 3 – фотодетектор, 4 – цепь управления инфракрасным излучателем, 5 – внешний инфракрасный излучатель, 7 – фабричный тестовый блок, 8 – блок контроля питания, 9 – цепь контроля, где 6 – усилитель, 14 – 8-разрядный аналого-цифровой преобразователь (АЦП), который преобразует аналоговые даннные, приходящие с фотодетектора, в цифровой код, 15 – алгоритмический блок, который анализирует цифровые данные, приходящие с АЦП, 10 – блок сброса питания (Reset), 11 – блок формирования сигнала тревоги, 12 – пользовательская кнопка «тест», 13 – сигнальный индикатор.

Дымовой оптико-электронный пожарный извещатель работает следующим образом.

В дежурном режиме алгоритмический блок (15) каждые 4 с (рабочий цикл) вырабатывает импульс длительностью порядка 40 мкс, который поступает на цепь управления инфракрасным излучателем (4), которая затем уже подает сигнал на внешний инфракрасный излучатель (5). С фотодетектора (3) снимается сигнал и через усилитель (6) попадает на аналого-цифровой преобразователь (14), который преобразует его в цифровую форму и передает в алгоритмический блок (15), который анализирует поступивший сигнал. При отсутствии дыма в чувствительной области оптической системы импульсы, принимаемые фотодетектором (3), после усиления оказываются ниже некоторого порогового уровня, алгоритмический блок (15) раз в 4 цикла зажигает сигнальный индикатор (13). При появлении дыма в чувствительной области оптической системы импульсы инфракрасного излучения, отражаясь от дымовых частиц, увеличивают фотоответ. При превышении некоторого заданного уровня фотоответа алгоритмический блок (15) фиксирует состояние “ПОЖАР” и рабочий цикл становится равным 1 с (для сохранения чувствительности). Если четыре цикла подряд (для фильтрации помех) уровень фотоответа не уменьшился, то алгоритмический блок (15) переводит интегральную микросхему (2) в режим «ПОЖАР», с помощью блока формирования сигнала тревоги 11 выдает тревожный сигнал в следящую станцию – резким увеличением тока потребления и зажигает сигнальный индикатор (13). Возврат в дежурный режим производится снятием питания с микросхемы (2) блоком 10, который подает сигнал на алгоритмический блок (15). В дежурном режиме рабочий цикл опять становится равен 4 с. Алгоритмический блок (15) также переводит интегральную микросхему (2) в режим «ПОЖАР», если в течение 3 секунд или более была нажата пользовательская кнопка «тест» (12).

Для исключения ложных срабатываний, связанных с загрязнением дымовой камеры, применен цифровой алгоритм автоматической компенсации загрязнения дымовой камеры, реализованный алгоритмическим блоком (15), который обеспечивает более лучшую и стабильную работу устройства обнаружения дыма, чем алгоритм компенсации загрязнения дымовой камеры, реализованный на компараторах (как в прототипе).

При достижении запыленности дымовой камеры сверх разрешенного уровня алгоритмический блок (15) формирует признак “ЗАПЫЛЕННОСТЬ” двойным миганием сигнального индикатора (13) раз в 4 цикла.

После очистки дымовой камеры устройство обнаружения дыма автоматически полностью восстанавливает свою работоспособность.

Литература

1. Патент США 5705988.

2. Патент США 5691704.

3. Патент США 6437698.

Формула изобретения

Дымовой оптико-электронный пожарный извещатель, содержащий корпус с отверстиями и расположенный на корпусе сигнальный индикатор, корпус состоит из нижней и верхней частей, расположенные в верхней части инфракрасный излучатель и интегральную микросхему, включающую в себя цепь управления инфракрасным излучателем, фотодетектор, блок контроля питания, блок сброса питания, блок формирования сигнала тревоги, тестовый блок и цепь контроля, дымовую камеру, расположенную в нижней части корпуса, имеющую барьер, который не допускает прямого прохождения сигнала от инфракрасного излучателя к фотодетектору, отличающийся тем, что цепь контроля выполнена на базе аналого-цифрового преобразователя, преобразующего аналоговый сигнал, приходящий через усилитель с фотодетектора, в цифровой, и алгоритмического блока, управляемого блоками контроля питания, сброса питания, тестовым блоком и кнопкой «тест», указанный алгоритмический блок анализирует приходящий с аналого-цифрового преобразователя цифровой сигнал и управляет сигнальным индикатором и блоком формирования сигнала тревоги, а также с помощью цепи управления инфракрасным излучателем управляет инфракрасным излучателем.

РИСУНКИ

Categories: BD_2356000-2356999