Патент на изобретение №2355004

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2355004 (13) C1
(51) МПК

G02B26/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 30.08.2010 – действует

(21), (22) Заявка: 2007137746/28, 12.10.2007

(24) Дата начала отсчета срока действия патента:

12.10.2007

(46) Опубликовано: 10.05.2009

(56) Список документов, цитированных в отчете о
поиске:
US 5841916 А, 24.11.1998. US 6992830 В1, 31.01.2006. RU 11630 U1, 16.10.1999. RU 4026 U1, 16.04.1997.

Адрес для переписки:

117393, Москва, ул.Профсоюзная, 78, оф.3323, СТАРФИЛД, пат.пов. В.Н.Рослову

(72) Автор(ы):

Данилов Олег Борисович (RU),
Сидоров Александр Иванович (RU),
Виноградова Ольга Петровна (RU),
КИМ Жэ-Сеунг (KR),
КИМ Су Юнг (KR),
ЧОИ Донг-Бум (KR)

(73) Патентообладатель(и):

Корпорация “САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд” (KR)

(54) РЕГУЛЯТОР ИНТЕНСИВНОСТИ ИЗЛУЧЕНИЯ

(57) Реферат:

Изобретение относится к области оптоэлектроники и может найти применение в аппаратуре для оптической записи и воспроизведения информации. Регулятор интенсивности излучения включает в себя две призмы полного внутреннего отражения с регулируемым зазором между ними. На поверхность призм нанесены пленочные покрытия с показателем преломления большим, чем показатель преломления материала призм, причем произведение толщины пленочных покрытий на их показатель преломления лежит в диапазоне 0,2-0,4 мкм для видимой области спектра. Технический результат – уменьшение спектральной неравномерности коэффициентов пропускания и отражения. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области оптоэлектроники и может найти применение в различной аппаратуре для оптической записи и воспроизведения информации.

Известны многочисленные попытки решить проблему управления интенсивностью оптического излучения за счет использования различных физических и химических эффектов.

Так, например, имеются описания конструкций ослабителей излучения на основе нелинейно-оптического эффекта, известного как светоиндуцированное рассеяние. Светоиндуцированное рассеяние является основным механизмом в ослабителях на основе светоиндуцированных дифракционных решеток в кристаллах с примесью ионов переходных металлов (см. патент РФ 2282880 [1]). Эффект ослабления возникает за счет увеличения светорассеяния при увеличении интенсивности излучения.

Известны также жидкокристаллические регуляторы интенсивности излучения, в конструкциях которых используют слой жидкого кристалла (см., например, сборник Display Devices. Ed. J.I.Pankove. Springer-Verlage, Berlin. 1980 [2]), помещенного между прозрачными электродами и двумя скрещенными поляризаторами. При подаче на жидкокристаллический слой управляющего электрического сигнала происходит поворот плоскости поляризации света и изменение интенсивности света, проходящего через устройство в целом.

Регуляторы интенсивности света на основе линейного электрооптического эффекта состоят из кристалла, обладающего электрооптическим эффектом, либо органической или неорганической пленки, обладающей электрооптическим эффектом (см., например, W.Brunner, K.Junge. Wissensspeicher Lasertechnic. VEB Fachbuchverlag, Leipzig. 1987 [3]), помещенной между прозрачными электродами и двумя скрещенными поляризаторами. При подаче на электрооптический кристалл или пленку управляющего электрического сигнала происходит поворот плоскости поляризации света и изменение интенсивности света, проходящего через устройство в целом.

Модуляторы света на основе нарушения полного внутреннего отражения (НПВО) представляются наиболее перспективными. Механизм модуляции в устройствах данного типа основан на изменении толщины зазора между двумя призмами полного внутреннего отражения либо на изменении показателя преломления слоя между ними. Это приводит к изменению условий туннелирования электромагнитной волны из первой призмы во вторую и, в результате, к изменению коэффициентов пропускания и отражения устройства. Устройства на основе НПВО могут быть использованы и как управляемые ослабители излучения с внешним управляющим сигналом. Изменение величины зазора между призмами может осуществляться, например, с помощью пьезоэлектрического движителя (см., например, патент РФ 2022433 [5]; патент США 5555327 [6]; патент США 5841916 [7]) либо с помощью магнитострикционных элементов (см., например, опубликованную заявку на патент РФ 96103862 [8]). Наиболее близким к заявляемому изобретению является устройство [7].

Достоинством устройств на основе НПВО является отсутствие светорассеяния, приводящего к искажению изображения, конструктивная простота и широкий температурный диапазон функционирования.

Одним из основных недостатков модуляторов света на основе нарушения полного внутреннего отражения является зависимость коэффициентов отражения и пропускания от длины волны.

Задача, на решение которой направлено заявляемое изобретение, состоит именно в преодолении этого основного недостатка, т.е. в создании конструкции, позволяющей уменьшить спектральную неравномерность коэффициентов пропускания и отражения устройства в несколько раз по сравнению с аналогами.

Поставленная задача решена за счет создания конструкции усовершенствованного регулятора интенсивности оптического излучения, включающего в себя две призмы полного внутреннего отражения, отличительной чертой которого является то, что на внутренние поверхности призм полного внутреннего отражения нанесены диэлектрические пленки с высоким показателем преломления, в которых происходит интерференция электромагнитной волны, проникающей из первой призмы. Для видимой области спектра при оптической толщине пленок, равной 0,20,4 мкм, в результате интерференции происходит компенсация спектральной неравномерности коэффициентов пропускания и отражения устройства при разных толщинах зазора между призмами.

В близком по замыслу варианте изобретения на внутренние поверхности призм полного внутреннего отражения нанесены диэлектрические пленки с высоким показателем преломления и дисперсией поглощения – увеличенным коэффициентом поглощения на длинноволновой границе рабочей спектральной области, в которых происходит интерференция электромагнитной волны, проникающей из первой призмы. Для видимой области спектра при оптической толщине пленок, равной 0,20,4 мкм, в результате интерференции и дисперсии поглощения происходит компенсация спектральной неравномерности коэффициентов пропускания и отражения устройства при разных толщинах зазора между призмами.

Для лучшего понимания существа заявляемого изобретения далее приводится его пояснение с привлечением графических материалов.

На Фиг.1 приведен вариант конструкции регулятора интенсивности излучения, где обозначены призмы 1, компенсирующие покрытия 2, пьезоэлектрический движитель 3 и держатели призм 4.

На Фиг.2 представлены спектральные зависимости коэффициента пропускания регулятора интенсивности излучения с компенсирующими покрытиями. 201 – d=0,01 мкм, 202 – 0,06 мкм, 203 – 0,1 мкм, 204 – 0,4 мкм.

На Фиг.3 представлены: вид 3.1 – спектральные зависимости коэффициента пропускания регулятора интенсивности излучения с поглощающим компенсирующим покрытием, где 301 – d=0,01 мкм, 302 – 0,06 мкм, 303 – 0,1 мкм, 304 – 0,4 мкм, вид 3.2 демонстрирует спектральную зависимость коэффициента поглощения компенсирующего покрытия =40°.

Фиг.4 показывает зависимость неравномерности спектральной характеристики регулятора интенсивности излучения от толщины зазора между призмами, где 401 – регулятор интенсивности излучения без компенсирующих покрытий, 402 – регулятор интенсивности излучения с непоглощающими компенсирующими покрытиями, 403 – регулятор интенсивности излучения с компенсирующими покрытиями, имеющими дисперсию поглощения.

Как видно из Фиг.1, устройство состоит из двух призм полного внутреннего отражения с показателем преломления 1,8. На внутренние поверхности призм нанесены компенсирующие покрытия из ZnO толщиной 0,13 мкм. Зазор d между призмами регулируется с помощью пьезоэлектрического движителя и изменяется от 0,02 до 0,6 мкм.

На Фиг.2 показана расчетная спектральная зависимость коэффициента пропускания регулятора интенсивности излучения с компенсирующими покрытиями при разной толщине зазора d. Расчет показал, что разброс коэффициента пропускания на разных длинах волн в этом случае равен 2-10%. Расчет оптических характеристик аналогичного устройства без диэлектрических пленок, компенсирующих спектральную неравномерность коэффициентов пропускания и отражения, показал, что в режиме ослабления неравномерность коэффициента пропускания в спектральном интервале 0,4-0,75 мкм может достигать 25%.

Сравнение устройств с компенсирующими покрытиями и без них показывает, что введение компенсирующих покрытий позволяет уменьшить разброс коэффициента пропускания на разных длинах волн до 2-10%.

Дополнительное увеличение равномерности спектральной характеристики регулятора интенсивности излучения достигается также при использовании компенсирующих пленок с дисперсией поглощения. Такие пленки изготовляют из диэлектрического материала с примесью ионов переходных либо редкоземельных металлов, имеющих полосы поглощения на длинноволновой границе видимой области спектра. На Фиг.3, вид 3.1, показана спектральная зависимость коэффициента пропускания УОФ с компенсирующими покрытиями из ZnO толщиной 0,13 мкм, одно из которых имеет дисперсию коэффициента поглощения, показанную на Фиг.3, вид 3.2.

Сравнение коэффициентов неравномерности спектральной характеристики коэффициента пропускания (Т=Tmaxmin) показано на Фиг.4. Из чертежа видно, что использование компенсирующих покрытий в регуляторе интенсивности излучения на основе НПВО позволяет уменьшить неравномерность спектральной характеристики в 2-10 раз.

Заявленная конструкция предназначена для практического использования в таких устройствах, как:

– “умный” оптический переключатель для устройств памяти, оптической записи информации (многоуровневой, небинарной и т.д.);

– оптический анализатор для экранов, мониторов;

– модулятор интенсивности лазерного излучения.

Регулятор интенсивности излучения может быть использован также для защиты фотоприемника или матрицы фотоприемников от повреждения или насыщения интенсивным излучением. Для этого подается электрический сигнал с защищаемого фотоприемного устройства на пьезоэлектрический движитель, управляющий зазором между призмами.

Следует отметить, что описанный вариант реализации заявляемой конструкции не является единственно возможным и допускает различные модификации, ограниченные лишь объемом притязаний, изложенных в формуле изобретения.

Формула изобретения

1. Регулятор интенсивности излучения, включающий в себя две призмы полного внутреннего отражения с регулируемым зазором между ними, отличающийся тем, что на поверхность призм нанесены пленочные покрытия с показателем преломления большим, чем показатель преломления материала призм, причем произведение толщины пленочных покрытий на их показатель преломления лежит в диапазоне 0,2-0,4 мкм для видимой области спектра.

2. Регулятор по п.1, отличающийся тем, что нанесенные на поверхность призм пленочные покрытия имеют примесь ионов переходных металлов, имеющих полосу поглощения на длинноволновой границе рабочей спектральной области.

3. Регулятор по п.1, отличающийся тем, что нанесенные на поверхность призм пленочные покрытия имеют примесь ионов редкоземельных металлов, имеющих полосу поглощения на длинноволновой границе рабочей спектральной области.

4. Регулятор по п.1, отличающийся тем, что нанесенные на поверхность призм пленочные покрытия имеют примесь ионов красителей, имеющих полосу поглощения на длинноволновой границе рабочей спектральной области.

РИСУНКИ

Categories: BD_2355000-2355999