Патент на изобретение №2353763
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РУД
(57) Реферат:
Изобретение относится к области добычи полезных ископаемых химико-технологическими способами. Способ подземного выщелачивания благородных металлов из руд водопроницаемых россыпных и золоторудных месторождений, а также кор выветривания включает бурение системы закачных и откачных скважин, нагнетание в рудовмещающий пласт окислителя и выщелачивающего раствора, откачку продуктивного раствора, переработку его известными способами цементации, сорбции. Отработку руды ведут в две стадии. На первой стадии окисляют кислородом рудовмещающий пласт путем заводнения его умягченным оборотным раствором, насыщенным кислородосодержащим газом. Закачной раствор предварительно осветляют от взвеси солей жесткости и примесей. На второй стадии добавляют к откачному раствору аммиакат меди и тиосульфат, корректируют pH и содержание сульфита сернистой кислотой и аммиаком. Этой смесью окисляют и выщелачивают благородные металлы. Технический результат заключается в использовании экологически чистого тиосульфатного выщелачивания благородных металлов в пластовых условиях. 4 з.п. ф-лы.
Изобретение относится к области добычи полезных ископаемых химико-технологическими способами. Оно может быть использовано при извлечении благородных металлов из погребенных россыпей, кор выветривания и комплексных золоторудных месторождений, находящихся в благоприятных гидрогеологических условиях. Установившаяся в горно-добывающей промышленности тенденция снижения содержания редких и благородных металлов в рудах, а также сложные гидрогеологические условия месторождений неизбежно привели к развитию способов подземного выщелачивания (ПВ). Главными критериями применимости этих способов на практике являются эффективность извлечения и экологическая безопасность. Сотрудниками Иргиредмета в 1977 г. был впервые испытан способ ПВ благородных металлов из руд россыпного месторождения в Якутии. Несмотря на обнадеживающие результаты опыта, способ не получил развития по причине токсичности реагента и неизбежного загрязнения подземных вод за пределами горного отвода. Известен хлорно-хлоридный способ ПВ благородных металлов (патент РФ 2074998, 1994 г., прототип). Способ освоен в промышленном масштабе на двух месторождениях. На Татарском месторождении на 01.01.06 было добыто 320 кг, на Маминском – 89 кг золота (Минеральные ресурсы Недостатки способа проистекают из сложности обращения с реагентом и переработки агрессивных продуктивных растворов. Известен тиосульфатный способ кучного выщелачивания благородных металлов из окисленных руд (патент Р. Казахстан 1873, аналог). Способ практикуется в промышленном масштабе на месторождении Жерек (Горный журнал, 2001 г., Известен двухстадийный способ скважинного ПВ урана (патент США 4376098, аналог). Рудовмещающий пласт сначала прорабатывают раствором соляной или др. кислот без окислителя, а затем выщелачивают уран серной кислотой с окислителем. Предварительная солянокислотная обработка пласта направлена на растворение некоторых минералов щелочноземельных металлов и железа. Вследствие этого на последующей стадии выщелачивания увеличивается фильтрационная проницаемость, улучшается контакт полезного компонента с серной кислотой, что способствует получению более высокого коэффициента извлечения урана. Технической задачей предлагаемого способа является использование экологически чистого тиосульфатного выщелачивания благородных металлов в пластовых условиях. Она достигается за счет предварительного окисления вмещающих пород и улучшения фильтрационной проницаемости пласта. Сущность способа состоит в последовательном использовании двух окислителей: кислорода и окисной меди в форме медно-аммиачного комплекса. Весь процесс отработки рудовмещающего пласта разделяют на две стадии. На первой вмещающие породы окисляют кислородом путем заводнения умягченным пластовым раствором, имеющим рН=8-10, насыщенным кислородосодержащим газом, на второй осуществляют собственно выщелачивание благородных металлов также при рН=8-10 тиосульфатно-аммиачным раствором, который содержит окисную медь. Полный технологический цикл извлечения благородных металлов предлагаемым способом разделяется на 10 основных операций: – умягчение откачных растворов путем добавки щелочного реагента; – осветление закачного раствора от взвеси; – насыщение осветленного раствора кислородсодержащим газом; – окисление рудовмещающей породы путем заводнения кислородсодержащим раствором; – приготовление выщелачивающего тиосульфатного раствора; – приготовление раствора аммиаката меди; – введение растворов тиосульфата и аммиаката меди в оборотный раствор; – корректировка рН выщелачивающей смеси; – выщелачивание благородных металлов тиосульфатно-аммиачной смесью; – откачка продуктивного раствора и его переработка. Переработка продуктивного раствора с получением конечного продукта включает еще несколько операций, но эта часть технологии относится к другой самостоятельной области. Химические процессы, сопровождающие умягчение пластовых вод, хорошо известны из технологии водоподготовки котловой воды и карбонатного способа ПВ урана. Они основаны на обменных реакциях растворенных солей жесткости со щелочными агентами: аммиаком, карбонатами и гидроокисями щелочных металлов. Образующиеся кристаллические осадки углекислых солей щелочноземельных металлов и аморфных гидратов железа и алюминия отделяются от раствора отстаиванием и/или фильтрацией. Другой вариант умягчения основан на ионообменных процессах с использованием сульфоугля либо катионообменных смол. Этот способ также широко практикуется при водоподготовке в промышленном масштабе и не требует пояснения. Насыщение осветленного раствора кислородсодержащим газом достигается известным способом Froth-flow (пенный поток), впервые использованным фирмой Union Carbide на предприятии ПВ урана. Имеются многочисленные конструкции газонасытителей скважинного типа, в том числе отечественные (АС СССР 1571828, 1988 г.). Растворимость кислородсодержащего газа (g, мг/л) на забое закачной скважины для давлений от 1 до 100 ат и температур от 0 до 40°С удовлетворительно описывается уравнением По величине окисляемости пород рудовмещающего пласта рассчитывается количество газонасыщенного раствора, которое необходимо для их окисления при конкретных гидрогеологических параметрах. Для практических целей может использоваться технический кислород, поставляемый в автореципиентах ТРЖК, либо обогащенный кислородом воздух, полученный в воздухоразделительных установках (ВРУ), которые, в частности, выпускаются Российскими компаниями РАНКО, ГРАСИС и НПФ ТЕСОРБ. Окисление некоторых наиболее важных минералов вмещающих пород – пирита и халькопирита в слабощелочном растворе на первой стадии отработки описывается следующими уравнениями: 2FeS2+15/2O2+8OH– CuFeS2+17/4O2+4NH3+2OH– Если в пластовой воде содержится сероводород или сульфид-ион как продукт разложения органического вещества, то они также претерпевают последовательное окисление: 2S2-+2O2+H2O S2O3 На стадии растворения благородных металлов из руды протекают следующие реакции: Au+5S2O3 Тиосульфатный комплекс золота устойчив в интервале рН=8,5-10,5 и имеет константу нестойкости 4·10-30. Окисление протекает при окислительном потенциале 0,15-0,2 В. Аналогично идет растворение серебра, но тиосульфатный комплекс его менее устойчив и имеет константу нестойкости 3,5·10-14. Образование медно-аммиачного комплекса идет по реакции Cu2++4NH3 Константа нестойкости комплекса 5·10-10. Этот комплекс в процессе восстановления в тиосульфатной среде претерпевает изменение: Новизна предлагаемого способа состоит в использовании тиосульфатного выщелачивания благородных металлов в пластовых условиях. Это становиться возможным благодаря предварительному окислению вмещающих пород кислородом и извлечению солей жесткости из пластовой воды. Эти мероприятия, с одной стороны, облегчают окисление благородных металлов в присутствии комплексообразователя, с другой – улучшают фильтрационную проницаемость пород по отношению к выщелачивающему раствору. Преимущества способа перед существующим хлорно-хлоридным состоят в большей экологической безопасности реагента, осуществлении процесса в слабощелочной среде, позволяющей иметь весь комплекс оборудования в некоррозионном исполнении, и использование кислорода воздуха – дешевого и доступного в необходимом количестве в любом регионе. Рентабельность способа будет определяться наличием в руде сульфидов, в частности пирита, окислов железа и др. восстановителей, которые требуют окисления. Присутствие в руде халькопирита и др. и медных минералов может существенно сократить расход медного купороса и упростить технологию. Главные составляющие операции способа были опробованы в натурных условиях в различных регионах. Пример 1. В опытно-промышленном масштабе была проверена технология умягчения пластовой воды на месторождении Букинай. Исходная пластовая вода имела состав: (мг/л) Са2+ – 220-280; Mg2+ – 93-130; Cl– – 730-800; SO4 Пример 2. В опытно-промышленном масштабе опробовался способ умягчения пластовой воды того же состава путем адсорбции на сульфоугле. Фильтрация раствора осуществлялась попеременно в двух фильтрах заводской конструкции объемом по 6 м3 каждый. Остаточное содержание кальция в фильтрате не превышало 15-20 мг/л. По мере насыщения катионита он подвергался регенерации 10% раствором хлористого натрия. На протяжении всего периода испытаний кольматации скважин и пласта при закачке осветленного раствора не наблюдалось. Примеры 3, 4, 5. На трех месторождениях Казахстана испытывалась конструкция газонасытителя для смешивания кислорода с раствором по АС 1571828 в опытно-промышленном масштабе. Каждый опытный полигон включал 8-10 закачных скважин. Кислород в скважины поступал из баллонов, подключенных к общей рампе. За период испытаний, продолжавшихся от 6 до 9 месяцев, в пласт каждого полигона было подано от 26,7 т до 32 т кислорода. Концентрация его в закачном растворе находилась в пределах 250-380 мг/л. Максимальный удельный расход достигал 0,47 кг/т руды. Эффективность извлечения благородных металлов из руд тиосульфатно-аммиачными растворами многократно подтверждалась в лабораторных условиях и промышленном масштабе. Рентабельность способа ПВ будет зависеть от степени дисперсности полезных компонентов, содержания их в руде, величины окисляемости вмещающихся пород, фильтрационной проницаемости пласта и величины гидростатического напора на кровлю пласта.
Формула изобретения
1. Способ подземного выщелачивания благородных металлов из руд водопроницаемых россыпных и золоторудных месторождений, а также кор выветривания, включающий бурение системы закачных и откачных скважин, нагнетание в рудовмещающий пласт окислителя и выщелачивающего раствора, откачку продуктивного раствора, переработку его известными способами цементации, сорбции, отличающийся тем, что отработку руды ведут в две стадии: на первой окисляют кислородом рудовмещающий пласт путем заводнения его умягченным оборотным раствором, насыщенным кислородсодержащим газом, причем закачной раствор предварительно осветляют от взвеси солей жесткости и примесей, а на второй стадии добавляют к откачному раствору аммиакат меди и тиосульфат, корректируют pH и содержание сульфита сернистой кислотой и аммиаком, и этой смесью окисляют и выщелачивают благородные металлы. 2. Способ по п.1, отличающийся тем, что для умягчения пластового раствора используют аммиак, гидроокиси, карбонаты, гипохлориты щелочных металлов, а также ионообменные материалы: сульфоуголь и синтетические смолы. 3. Способ по п.1 или 2, отличающийся тем, что pH умягченного закачного раствора выдерживают в пределах 8,0-10,0. 4. Способ по п.1, отличающийся тем, что в качестве окислителя при заводнении пласта используют технологический кислород либо обогащенный кислородом воздух. 5. Способ по п.1, отличающийся тем, что pH тиосульфатно-аммиачного раствора поддерживают в пределах 8,0-10,0.
|
||||||||||||||||||||||||||