|
|
|
|
РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ |
(19) |
RU |
(11) |
2163144 |
(13) |
C2 |
|
(51) МПК 7
A61L2/08
|
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус: по данным на 27.05.2011 – прекратил действие, но может быть восстановлен |
|
|
|
|
(21), (22) Заявка: 97119121/13, 20.11.1997
(24) Дата начала отсчета срока действия патента:
20.11.1997
(43) Дата публикации заявки: 10.08.1999
(45) Опубликовано: 20.02.2001
(56) Список документов, цитированных в отчете о поиске:
ТУМАНЯН М.А., КАУШАНСКИЙ Д.А. Радиационная стерилизация. – М.: Медицина, 1974, с.304. SU 1470297 A1, 07.04.89. SU 1186214 A, 23.10.85.
Адрес для переписки:
620049, г.Екатеринбург, ул. Комсомольская 34, Институт электрофизики УРО РАН, патентная группа
|
(71) Заявитель(и):
Институт электрофизики Уральского отделения РАН
(72) Автор(ы):
Котов Ю.А., Соковнин С.Ю.
(73) Патентообладатель(и):
Институт электрофизики Уральского отделения РАН
|
(54) СПОСОБ СТЕРИЛИЗАЦИИ УПАКОВАННЫХ ИЗДЕЛИЙ
(57) Реферат:
Изобретение относится к медицинской технике, в частности к стерилизации упакованных изделий. В способе стерилизации изделий используют сильноточный электронный пучок. Пучок проникает через упаковку и генерирует внутри упаковки озон. Способ позволяет уменьшить поглощенную дозу излучения и стерилизовать изделия с толщиной большей, чем глубина проникновения излучения.
Изобретение относится к медицинской технике, а именно к способам и устройствам стерилизации медицинских материалов и инструмента.
Целью изобретения являются уменьшение поглощенной дозы излучения при стерилизации упакованных изделий радиационным способом и получение возможности стерилизации изделий с толщиной большей, чем глубина проникновения ионизирующего излучения.
Существующие способы стерилизации медицинских изделий можно разделить на термические, химические и физические [1]. Наиболее близким решением является радиационная стерилизация [2] вследствие универсального поражающего действия ионизирующего излучения на любые биологические объекты. Для радиационной стерилизации используется как гамма-излучение изотопов и реактора, так и ускоренные электроны. При этом доза радиационной стерилизации (независимо от вида излучения) не превышает 25 кГр. К недостаткам радиационной стерилизации относятся как ее повышенная опасность при использовании изотопов и реактора, так и небольшая глубина проникновения ускоренных электронов и высокая стоимость ускорителей постоянного тока. Все это ограничивает область применения радиационной стерилизации.
Предлагаемый способ стерилизации упакованных изделий заключается в облучении их ионизирующим излучением и отличается тем, что в качестве ионизирующего излучения используется сильноточный электронный пучок, проникающий через упаковку и генерирующий внутри упаковки в замкнутом объеме озон, который также обеспечивает стерилизацию упакованных изделий.
Устройство для реализации способа содержит излучатель, устройство подачи изделий под излучение и биологическую защиту. В качестве излучателя используется частотный импульсный ускоритель электронов УРТ-0,2 [3] (ускоряющее напряжение до 200 кВ, длительность импульса на полувысоте 34 нс, частота работы до 250 Гц, размеры пучка электронов 220 30 мм2 при импульсной плотности тока 0,3 А/см2), позволяющий получать импульсный сильноточный электронный пучок (СЭП), имеющий высокую эффективность при поверхностной стерилизации [4].
Наиболее простым и дешевым путем является использование озона, который образуется при облучении кислорода воздуха. Известны механизм и количественные показатели образования озона при облучении как постоянным [5], так и импульсным [6] электронными пучками, а также существует методика расчета образования озона при облучении [7].
Для проверки способа радиационной химической стерилизации (РХС) были выполнены облучения кювет из нержавеющей стали с ванной диаметром 50 мм и глубиной 2,5 мм, в которых размещались по две пластины (также из нержавеющей стали размерами 20 10 мм и толщиной 1 мм) с загнутыми краями (высотой 1 мм). Кюветы герметизировались фторопластовой пленкой толщиной 10 мкм. Толщина пластин намного больше длины пробега электронов СЭП. Наличие у пластин загнутых краев позволяет озоновоздушной смеси свободно омывать нижнюю (необлучаемую) поверхность. Заражение пластин микроорганизмами осуществлялось путем их окунания в свежеприготовленную культуру Staphyloccus aureus (наиболее показательных для загрязнения медицинского инструмента) концентрацией 106 1/мл. Это позволяло получать на пластинах поверхностную загрязненность с концентрацией микроорганизмов от 5 102 до 4 103 1/мл. Поверхностная загрязненность измерялась методом смыва, санитарный микробиологический анализ выполнялся методом посева на диагностические питательные среды с проращиванием в питательном растворе в течение 48 часов [8]. Смыв выполнялся с обоих пластин и стенок кюветы. Облучение кювет с микроорганизмами проводилось при комнатной температуре.
В процессе измерения производилось измерение поглощенной дозы в кювете. Для измерений поглощенной дозы СЭП использовали пленочные пластиковые детекторы типа ДЦП-ф [9], обернутые во фторопластовую пленку толщиной 10 мкм, для учета поглощения СЭП в герметизирующей пленке кювет. Детекторы размещали на том же расстоянии от выходного окна ускорителя, что и кюветы. Время облучения уменьшалось с 60 до 6 секунд, при этом поглощенная доза уменьшалась с 100 до 10 кГр.
Установлено, что герметично упакованные предварительно загрязненные Staphyloccus aureus пластины, как и сама кювета, становятся стерильными при облучении СЭП поглощенной дозой 10 кГр. Эта величина поглощенной дозы, а следовательно, энергозатраты не большие (как минимум), чем для радиационной стерилизации при одностороннем облучении СЭП.
Концентрация озона, генерируемого СЭП в замкнутом объеме кюветы, была рассчитана по [7] и составляла 74,7 мг/м3. Одновременно с генерацией происходит радиационное разложение озона с постоянной k1=1,7 1/с), поэтому время облучения t=Exp(k1) =5,5 с приведет к насыщению концентрации озона. Время существования озона после прекращения облучения определяется константой его химической нестойкости (k2=1,2 1/ч [8]) и превышает несколько часов.
Список литературы
2. Туманян М. А., Каушанский Д.А. Радиационная стерилизация. М./ Медицина, 1974. 304 с.
8. Справочник по микробиологическим и вирусологическим методам исследования / Под. ред. М.О. Биргера. М.Ж. Медицина, 1982. 357 с.
Формула изобретения
Способ стерилизации упакованных изделий путем облучения их ионизирующим излучением, отличающийся тем, что в качестве ионизирующего излучения используют сильноточный электронный пучок, проникающий через упаковку и генерирующий внутри упаковки в замкнутом объеме озон, который также обеспечивает стерилизацию упакованных изделий.
MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины за
поддержание патента в силе
Дата прекращения действия патента: 21.11.2008
Дата публикации: 20.04.2011
|
|
|
|
|