Патент на изобретение №2162965
|
||||||||||||||||||||||||||
(54) СПОСОБ УПРАВЛЕНИЯ ПОГРУЖНЫМ ЭЛЕКТРОДВИГАТЕЛЕМ СКВАЖИННОГО НАСОСА
(57) Реферат: Способ управления погружным электродвигателем скважинного насоса для добычи нефти из скважин может быть использован там, где требуется привести в соответствие приток пластовой жидкости в скважину и подачу насоса. Технический результат достигается путем применения в качестве регулируемого устройства гидравлической трансмиссии, состоящей из гидронасоса с регулируемым углом наклона наклонной шайбы и гидромотора, при этом регулирование наклона шайбы осуществляют через подвижный плунжер, упирающийся в наклонную шайбу гидронасоса с одной стороны, и сжатой пружиной, упирающейся в шток, соединенный с наклонной шайбой гидронасоса с другой стороны, относительно оси наклона шайбы. Расширяется область применения и диапазон регулирования частоты вращения погружных электродвигателей скважинных насосов. 3 ил. Изобретение относится к управлению погружным электродвигателем скважинного насоса для добычи нефти из скважин и может найти применение, когда требуется привести в соответствие приток пластовой жидкости в скважину и подачу насоса. Известно, что с изменением частоты вращения вала насоса прямо пропорционально изменяется его подача. Также известно, что все скважинные насосы для подъема пластовой жидкости соединяются с погружными электродвигателями непосредственно через шлицевые муфты, значит, частоты вращения вала насоса и электродвигателя одинаковы. При применении асинхронных трехфазных короткозамкнутых погружных электродвигателей переменного тока изменение частоты их вращения возможно, например, изменением частоты тока с помощью тиристорных преобразователей [1]. Наиболее близким по технической сущности является способ регулирования многосекционного электродвигателя скважинной насосной установки и скважинная насосная установка [2], в которой регулирование частоты вращения электродвигателя осуществляется путем поочередной подачи электроэнергии через блоки коммутационного аппарата и отдельные кабели к секциям с различным числом пар полюсов многосекционного асинхронного электродвигателя в зависимости от изменяющегося на входе в насос давления, измеряемого с помощью установленного датчика, выход которого подсоединен к коммутационному аппарату. Недостатком этого технического решения является ограниченность области применения, обусловленная ступенчатостью регулирования частоты вращения многосекционного электродвигателя. Задача изобретения – расширение области применения и диапазона регулирования частоты вращения вала. Технический результат достигается тем, что регулирование частоты вращения электродвигателя осуществляют силой гидростатического давления столба жидкости, находящейся над скважинным насосом, путем применения в качестве регулируемого устройства гидравлической трансмиссии, состоящей из гидронасоса с регулируемым углом наклонной шайбы и гидромотора, при этом регулирование наклона шайбы осуществляют через подвижный плунжер, упирающийся в наклонную шайбу гидронасоса с одной стороны, и сжатой пружиной, упирающейся в шток, соединенный с наклонной шайбой гидронасоса с другой стороны, относительно оси наклона шайбы. На фиг. 1 показана схема устройства для осуществления предлагаемого способа; на фиг.2 – разрез А-А фиг.1; на фиг.3 – схема расположения гидротрансмиссии в скважине. Устройство управления погружным электродвигателем скважинного насоса, осуществляющее предлагаемый способ (фиг. 1), состоит из корпуса 1, блока цилиндров насоса 2, соединенного с валом 12, наклонной чашки 3 с диском 4, плунжера 5, штока 6, пружины 7, а также блока 8 цилиндров гидромотора, соединенного с валом 9, наклонной чашки 10 с диском с постоянным углом наклона. Между блоком насоса и гидромотора установлен распределительный диск 11 с окнами 13 и 14. Окна 15 и 16 гидроцилиндров сообщаются с окнами 13 и 14 распределительного диска. Между окнами 13 и 14 имеются перемычки А и Б. Устройство, представляющее собой гидравлическую трансмиссию, в скважине располагается (устанавливается) между валом ПЭДа и валом его гидрозащиты (фиг.2) 3, соединенным с валом скважинного насоса. Способ регулирования частоты вращения вала насоса осуществляется следующим образом. При постоянной частоте вращения вала ПЭД 1 (фиг.2) через шлицевую муфту (на схеме не показано) вращение передается валу 12 (фиг. 1), который вращает блок цилиндров 2 (фиг. 1) и наклонный диск 4 в чашке 3 (фиг. 1). Вследствие угла наклона диска через шарнирно соединенные штоки с диском и поршнями цилиндров, поршни совершают возвратно-поступательное движение. При движении внутрь цилиндра рабочая жидкость, находящаяся в них, через окна цилиндров и одно из окон распределителя поступает под поршень блока цилиндров гидромотора, в результате создается сила гидростатического давления, выталкивающая поршень и через шарнирно соединенный шток действует на наклонный диск в чашке 10 гидромотора, создается касательная сила на диск, которая его вращает, одновременно вращая соединенный с диском вал гидромотора. В зависимости от угла наклона диска гидронасоса изменяется ход поршня, а следовательно, изменяется его подача. Так как скорость вращения гидромотора зависит от количества подаваемой в него жидкости, то соответственно вращается и вал гидромотора. Положение наклонной чашки гидронасоса зависит от положения упирающегося в него плунжера 5, на торцевую поверхность которого действует сила гидростатического давления столба жидкости, находящегося над плунжером в межтрубном пространстве. Если подача скважинного насоса 4 (фиг.2) будет превышать приток жидкости в скважину, то столб жидкости над плунжером 5 (фиг. 1) будет понижаться, сила гидростатического давления на плунжер уменьшается, и сжатой пружиной 7 (фиг. 1) через шток 6 (фиг. 1), соединенный с чашкой 3 (фиг. 1), последняя будет перемещаться в сторону уменьшения угла наклона по отношению к валу гидронасоса. Ход поршней гидронасоса при этом уменьшится, уменьшится подача насоса в гидромотор, снизится частота вращения вала гидромотора, а следовательно, и частота вращения вала скважинного насоса. В результате этого подача уменьшится и придет в соответствие с притоком жидкости в скважину. Если приток жидкости в скважину будет больше подачи насоса, то через возрастающий столб жидкости и возрастающие в связи с этим силы гидростатического давления на плунжер 5 (фиг. 1) последний будет перемещать чашку в сторону увеличения угла его наклона, что приведет к увеличению подачи гидронасоса и, как следствие, – к увеличению частоты вращения вала гидромотора и связанного с ним вала скважинного насоса. Подача скважинного насоса увеличится, столб жидкости в скважине начнет понижаться до тех пор, пока не стабилизируется его установившийся уровень, что будет свидетельствовать о равенстве подачи скважинного насоса и притока пластовой жидкости в скважине. Источники информации 1. Авторское свидетельство SU N 2001313, кл. F 04 D 13/10, опубл. Бюл. N 37-38. 2. Авторское свидетельство SU N 1643794 A1, кл. F 04 D 15/00, 13/12, опубл. Бюл. N 15. Формула изобретения
РИСУНКИ
MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе
Дата прекращения действия патента: 11.01.2002
Номер и год публикации бюллетеня: 11-2003
Извещение опубликовано: 20.04.2003
|
||||||||||||||||||||||||||