Патент на изобретение №2349930
|
||||||||||||||||||||||||||
(54) СПОСОБ ЛАЗЕРНОГО ГЕТЕРОДИННОГО ПРИЕМА ИЗЛУЧЕНИЙ
(57) Реферат:
Изобретение относится к лазерной доплеровской локации дисперсионно ограниченных объектов с их панорамным поиском по угловым координатам и многоканальной обработкой принимаемых излучений в режиме гетеродинного приема с оптимальной фильтрацией на основе дисперсионных линий задержки. Способ лазерного гетеродинного приема излучений основан на фотосмешении в оптически связанных с приемным объективом фоточувствительных элементах принимаемого излучения с когерентным с ним гетеродинным излучением в форме плоской волны с разностной частотой, расположенной в спектре радиосигналов. Приемные площадки фоточувствительных элементов смещают относительно фокальной плоскости приемного объектива на расстояние, равное 1,95
Изобретение относится к лазерной доплеровской локации дисперсионно ограниченных объектов с их панорамным поиском по угловым координатам и многоканальной обработкой принимаемых излучений в режиме гетеродинного приема с оптимальной фильтрацией на основе дисперсионных линий задержки (ДЛЗ). Известно построение лазерных доплеровских локаторов с многоканальной обработкой информации на основе ДЛЗ, работающих в режиме гетеродинного приема излучений [1-5]. Использование фактора высокой когерентности излучения одночастотных газовых лазеров [6, 7], например СО2-лазеров, позволяет осуществить когерентный прием таких излучений методом фотосмешения сигнального и гетеродинного пучков, что находит применение в лазерных доплеровских локаторах. Полученные в результате фотосмешения радиосигналы разностной частоты обрабатываются в согласованных фильтрах на ДЛЗ, что позволяет повысить обнаружительную способность локаторов, то есть величину отношения сигнал/шум на входе решающего устройства [8-13]. Для обнаружения объектов в расширенной угломестной зоне где Выбор ДЛЗ существенно влияет на обнаружительные, точностные и динамические характеристики локатора, как это следует из (1). Пороговые свойства фотодетектора при когерентном приеме определяются параметрами В известных локационных гетеродинных системах фотоприемник обычно устанавливают в фокальной плоскости приемного объектива, то есть совмещают фоточувствительный элемент с диском Эйри, внутри которого сигнальное поле считается плоским и сосредоточивает до 84% всей энергии сигнала. При этом лазерное взаимно когерентное с сигнальным гетеродинное поле также плоское, что обеспечивает наибольшую эффективность фотосмешения сигнального и гетеродинного полей. Этот известный способ совмещения фоточувствительного элемента с фокальной плоскостью приемного объектива (с диском Эйри) используется в заявляемом техническом решении в качестве прототипа. Однако, как будет показано ниже, такому известному способу присущ недостаток, заключающийся в том, что при этом снижается при прочих равных условиях результирующее отношение сигнал/шум Указанный недостаток известного способа устранен в заявляемом техническом решении. Целью изобретения является повышение отношения сигнал/шум на входе решающего устройства. Указанная цель достигается в способе лазерного гетеродинного приема излучений, основанном на фотосмешении в оптически связанных с приемным объективом фоточувствительных элементах принимаемого излучения с когерентным с ним гетеродинным излучением в форме плоской волны с разностной частотой, расположенной в спектре радиосигналов, отличающимся тем, что приемные площадки фоточувствительных элементов смещают относительно фокальной плоскости приемного объектива на расстояние, равное 1,95 Достижение указанной цели объясняется результатами анализа конкуренции между снижением эффективности фотосмешения сигнального и гетеродинного волновых полей при смещении рабочих площадок фоточувствительных элементов от фокальной плоскости приемного объектива, где для сигнального поля волна отличается от плоской (как в диске Эйри), и увеличением мощности сигнальной компоненты на рабочей площадке фоточувствительного элемента, нивелирующим действие шума гетеродинного поля. Проанализируем сущность эффекта увеличения отношения сигнал/шум на входе решающего устройства локатора с гетеродинным приемом в заявляемом техническом решении. Как известно [14, 15], распределение поля в фокальной плоскости приемного объектива, образуемое точечным источником (дифракционно ограниченным объектом), определяется функцией рассеяния где J1(r) – функция Бесселя первого порядка. При этом радиус диска Эйри задается аргументом функции Бесселя и равен rЭ=3,83 Полагая поле гетеродинной волны также плоским и коллинеарным оптической оси приемного объектива, имеем коэффициент фотосмешения у=1 при условии соизмеримости рабочей площадки В случае, когда причем (dPC/d причем распределение плотности мощности таково, что (dPC/d
Обобщенное выражение использованной в (5) гипергеометрической функции вида для индексов p=1, q=2, z=x2/4 и с символами Пахгаммера (s)k, определяемыми как (s)k=s(s+1)(s+2)…(s+k-1)=Г(s+k)/Г(k), то есть отношением гамма-функций, с учетом (5) и (6) определяет искомое решение для величины С математической точки знения аналогичный результат получают либо путем вычисления интеграла от произведения комплексно-сопряженных сигнального и гетеродинного коллинеарных полей на входной апертуре приемного объектива, либо в любом произвольно расположенном от фокальной плоскости сечении, ортогональном оптической оси приемного объектива, как это показано в работе [14]. Однако это справедливо при использовании одиночного фотодетектора. В случае линейки фотодетекторов потребовалось бы использовать N гетеродинных полей, векторы-орты которых образовывали бы углы в смежных каналах В этом случае возможность произвольного сдвига z линейки фотодетекторов от фокальной плоскости приемного объектива существенно ограничена возрастающей степенью неколлинеарности смешиваемых в сечении Выражение для комплексной амплитуды гауссова пучка на расстоянии z от фокальной плоскости приемного объектива имеет вид e(r)|Z=[E0 Средний ток биений на промежуточной частоте в фотодетекторе определяется как Обозначая где a= Здесь следует иметь в виду, что эффективность фотосмешения при |z|>0 может только убывать в сравнении с единицей (для z=0), увеличение же пороговой чувствительности при смещении z просто объясняется ростом площади сигнального пятна которое при расчетах локационной системы использовано в выражении (1). Величина смещения плоскости регистрации от фокальной плоскости приемного объектива и отвечающая оптимальному значению отношения у2/ Нетрудно показать, что при смещении z>> Поскольку в практически реализуемых доплеровских локационных системах с когерентным приемом методом гетеродинирования всегда выполняется неравенство Таким образом, заявляемое техническое решение предпочтительно для применения в лазерных когерентных доплеровских локаторах, работающих по малоразмерным объектам, например по крылатым ракетам морского базирования и аналогичным им объектам, в частности в локаторах, предложенных в [3], с многоканальной обработкой на ДЛЗ, которые нашли широкое применение не только в локации, но и в других областях техники, в частности в микроинтроскопии непрозрачных объектов [16]. Литература 1. О.Ф.Меньших, Согласованный фильтр, Патент РФ №2016493. 2. О.Ф.Меньших, Устройство для анализа спектра сигналов, Патент РФ №2040798. 3. О.Ф.Меньших, Способ локации, Патент РФ №2296350. 4. Лазерная локация, Под ред.Н.Д.Устинова, М., Машиностроение, 1984. 5. В.В.Протопопов, Н.Д.Устинов, Инфракрасные лазерные локационные системы, М., Воениздат, 1987. 6. Измерение спектро-частотных и корреляционных параметров и характеристик лазерного излучения, Под ред. А.Ф.Котова и Б.М.Степанова, М., Радио и связь, 1982. 7..Ч.Кук, М.Бернфельд, Радиолокационные сигналы, пер. с англ., Под ред. В.С.Кильзона, М., Сов.радио, 1971. 8. Фильтры на поверхностных акустических волнах, Под ред. Г.Мэттьюза, М., Сов. радио, 1981,472 с. 9. В.И.Тверской, Дисперсионно-временные методы измерения спектров радиосигналов, М., Сов.радио, 1974, 240 с. 10. А.А.Джек, П.М.Грант, Дж.Х.Коллинз, Теория проектирования и применение Фурье-процессоров на поверхностных акустических волнах, ТИИЭИР, 1980, №4, р.22-43. 11. Фильтры на поверхностных акустических волнах, технология и применение, пер. с англ. Г.Б.Звороно, Под ред. В.Б.Акпамбетова, М., Радио и связь, 1981. 12. Я.Д.Ширман, В.Н.Манжос, Теория и техника обработки радиолокационной информации на фоне помех, М., Радио и связь, 1981. 13. Ю.С.Лезин, Оптимальные фильтры и накопители импульсных сигналов, М, Сов. радио, 1969. 14. А.Папулис, Теория систем и преобразований в оптике, М., Мир, 1971. 15. М.Борн, Э.Вольф, Основы оптики, М., Наука, 1970. 16. О.Ф.Меньших, Ультразвуковой микроскоп, Патент РФ №2270997.
Формула изобретения
Способ лазерного гетеродинного приема излучений, основанный на фотосмешении в оптически связанных с приемным объективом фоточувствительных элементах принимаемого излучения с когерентным с ним гетеродинным излучением в форме плоской волны с разностной частотой, расположенной в спектре радиосигналов, отличающийся тем, что приемные площадки фоточувствительных элементов смещают относительно фокальной плоскости приемного объектива на расстояние, равное 1,95
|
||||||||||||||||||||||||||

(f/D)2, где f – фокусное расстояние, D – диаметр приемного объектива, 
кругового обзора с узким мгновенным углом зрения по азимуту
(то есть при «веерообразной» диаграмме излучения) в когерентных локаторах на CO2-лазерах используют фотодиодные линейки из N фоточувствительных элементов КРТ (тройные соединения Kd Hg Т1, охлаждаемые жидким азотом) с N-канальной согласованной фильтрацией с использованием ДЛЗ. При этом предельная дальность обнаружения L диффузных дифракционно-ограниченных объектов находится из решения трансцендентного уравнения
– экстинкция среды, Р – мощность излучающего лазера, k – пропускание в излучающем и приемном трактах, у – эффективность фотосмешения, S – эффективная поверхность отражения (ЭПО) лоцируемого объекта, D – диаметр входного зрачка (приемного объектива),
– отношение сигнал/шум по напряжению на входе решающего устройства,
– спектральная плотность мощности шума фотодетектора (фоточувствительного элемента КРТ), Т0 – период кругового обзора, В=
фоточувствительного элемента не согласована с параметром приемного объектива (
(
=0,84 – коэффициент использования мощности сигнальной компоненты на фотодетекторе).
(
)/

о 2, где
, rЭ=Х0
|r|)=J1(х) при
с индексами
=-1 и
=1, решение которого имеет вид


при z=0 до R=z при z>>
r
=
