Патент на изобретение №2349546

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2349546 (13) C1
(51) МПК

C01B33/18 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.09.2010 – действует

(21), (22) Заявка: 2007128167/15, 24.07.2007

(24) Дата начала отсчета срока действия патента:

24.07.2007

(46) Опубликовано: 20.03.2009

(56) Список документов, цитированных в отчете о
поиске:
RU 2119454 C1, 27.09.1998. RU 2295492 C2, 10.06.2005. US 6352679 B1, 05.03.2002. JP 2000086227 A, 28.03.2000. GB 1040657 A, 01.09.1966. FR 2533205 A, 23.03.1984.

Адрес для переписки:

125009, Москва, Средний Кисловский пер., 7/10, кв.26, пат.пов. А.С.Попову, рег.№ 694

(72) Автор(ы):

Горовой Михаил Алексеевич (UA),
Горовой Юрий Михайлович (RU),
Клямко Андрей Станиславович (RU),
Пранович Александр Александрович (RU),
Власенко Виктор Иванович (RU),
Коржаков Владимир Викторович (RU)

(73) Патентообладатель(и):

Горовой Михаил Алексеевич (UA),
Горовой Юрий Михайлович (RU),
Клямко Андрей Станиславович (RU),
Пранович Александр Александрович (RU),
Власенко Виктор Иванович (RU),
Коржаков Владимир Викторович (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОДИСПЕРСНОГО ПОРОШКА ДИОКСИДА КРЕМНИЯ

(57) Реферат:

Изобретение может быть использовано в химической промышленности для получения высокодисперсного порошка диоксида кремния. В плазмотроне 1 генерируют плазму кислорода или кислородсодержащего газа и подают в реактор 3. Окисление тетрахлорида кремния кислородом или кислородсодержащим газом проводят при температуре 1000÷2100°С при соотношении молярных расходов тетрахлорида кремния и кислорода от 1,0 до 3,0. Распыливание жидкого тетрахлорида кремния производят через форсунку 10, соосно внутри и в направлении движения потока плазмы при давлении 0,2÷2,0 МПа с углом раскрытия факела распыливания 70÷170°. Предложенное изобретение позволяет получить высокодисперсный порошок диоксида кремния с размером частиц менее 30 нм с равномерным гранулометрическим составом. 1 ил., 2 табл.

Изобретение относится к области химической технологии и может быть использовано для получения высокодисперсного нанопорошка диоксида кремния и повышения его качества.

Из уровня техники известен способ получения дисперсных частиц диоксида кремния, в котором производят смешение летучего кремнийсодержащего компонента – тетрахлорида кремния (SiCl4) с водородообразующим газом (например, Н2, СН4) и кислородсодержащим газом, подача этой смеси в реактор, разложение летучего кремнийсодержащего компонента и окисление продуктов разложения (US 6352679, С01В 33/12, 2002). При этом в пламя реактора при температуре от 1000 до 21000°С, поддерживаемой за счет энергии экзотермических реакций, происходит разложение SiCl4 и окисление продуктов разложения с образованием диоксида кремния – SiO2, а также соляной кислоты – HCl и влаги – H2O, наличие которых в продуктах реакции снижет качество диоксида кремния, усложняет процесс его получения и аппаратурное оборудование.

Известен также способ получения высокодисперсного порошка в виде оксидов металлов или металлоидов путем окисления, включающий генерацию плазмы кислорода или кислородсодержащего газа, распыливание в потоке плазмы жидкого тетрахлорида металла или металлоида (RU 2119454 С1, С01G 1/02, 1998). При этом распыливание производят в виде нескольких газодисперсных струй из периферии в поток плазмы под углом к направлению движения потока плазмы, что не обеспечивает из-за продолжительности процесс окисления получение частиц порошка с размером менее 100 нм.

Изобретение направлено на повышение качества диоксида кремния и получение нанодисперсного порошка с размером частиц менее 30 нм.

Решение поставленной задачи обеспечивается тем, что способ получения высокодисперсного порошка диоксида кремния, согласно изобретению, включает генерацию плазмы кислорода или кислородсодержащего газа, введение путем распыливания в поток газовой плазмы жидкого тетрахлорида кремния и последующее окисление тетрахлорида кремния кислородом или кислородсодержащим газом при температуре 1000÷2100°С и при соотношении молярных расходов тетрахлорида кремния и кислорода от 1,0 до 3,0, при этом распыливание жидкого тетрахлорида кремния производят соосно внутри и в направлении движения потока плазмы при давлении 0,2-2,0 МПа с углом раскрытия факела распыливания 70÷170°.

Заявленный технический результат достигается за счет того, что диоксид кремния образуется в процессе окисления тетрахлорида кремния, распыленного соосно внутри и в направлении движения высокотемпературного кислородсодержащего потока плазмы, при этом происходит сокращение времени смешения реагентов, нагрева и испарения капель и, соответственно, сокращается время роста частиц диоксида кремния (SiO2). В результате обеспечивается получение нанодисперсного порошка с размером частиц менее 30 нм с равномерным гранулометрическим составом.

На чертеже представлена технологическая схема устройства для реализации заявленного способа.

Устройство содержит плазмотрон 1 с патрубком 2 для ввода кислорода или кислородсодержащего газа в плазмотрон, плазмохимический реактор 3 с патрубком 4 для ввода тетрахлорида кремния, устройство подачи 5 тетрахлорида кремния, закалочную камеру 6, теплообменник 7, циклон 8 и тканевый фильтр 9. Внутри плазмохимического реактора 3 (соосно реактору 3 и выходу потока плазмы из плазмотрона 1) установлена форсунка 10 для распыливания жидкого тетрахлорида кремния, выходящий из которой факел распыленной жидкости с углом раскрытия 70÷170° направлен в сторону движения потока плазмы.

Способ получения высокодисперсного порошка диоксида кремния реализуется следующим образом.

Кислород или кислородсодержащий газ подается в плазмотрон 1 по патрубку 2. Выходящий из плазмотрона 1 поток плазмы при температуре 1200÷3400°С поступает в плазмохимический реактор 3. Жидкий тетрахлорид кремния по патрубку 4 посредством подающего устройства 5 поступает в форсунку 10, установленную внутри плазмохимического реактора 3 с давлением в пределах от 0,2 до 2,0 МПа и распыливается на мелкие капли, причем распыливание производится внутри потока плазмы в направлении его движения, а угол раскрытия факела распыливания составляет 70÷170°, при этом траектории капель жидкости пересекают линии тока плазмы под углом 35÷85°. Капли попадают в плазменную среду непосредственно в зоне распыливания, причем все капли тетрахлорида кремния (SiCl4) смешиваются с плазмой, нагреваются и испаряются практически в одно и то же время, что приводит к сокращению времени смешения реагентов и к быстрому нагреву и испарению капель жидкости. Процессы нагрева и испарения капель SiCl4 и окисления паров тетрахлорида кремния с образованием диоксида кремния и хлора протекают с понижением температуры газовой фазы от температуры плазмы 1200÷3400°С до равновесной температуры продуктов реакции 1000÷2100°С. Продукты реакции охлаждаются в закалочной камере 6 и в теплообменнике 7 и в виде пылегазового потока поступают в аппараты осаждения: циклон 8 и тканевый фильтр 9. Из тканевого фильтра диоксид кремния возвращается в циклон 8, а газовая фаза продуктов реакции по патрубку 11 направляется на хлорирование кремнийсодержащего сырья. Готовый продукт – порошок диоксида кремния отводится из циклона 8 по патрубку 12.

В таблицах приведены режимные параметры процессов реализации заявленного способа и основные показатели качества целевого продукта – удельная поверхность частиц диоксида кремния, определенная по методу БЭТ, и средний размер частиц, рассчитанный по удельной поверхности по известным формулам. Температура плазмы и равновесная температура продуктов реакции определялись калориметрическим методом.

Режимные параметры процесса и показатели качества целевого продукта
Плазмотрон Подача SiCl4
№ примера Род газа Расход кг/ч Мощность, кВт Температура плазмы °С Расход SiCl4, кг/ч Соотношение молярных расходов О2 и SiCl4 Давление подачи, МПа
1 Кислород 117 320 3400 220 1 2,0
2 Кислород 190 222 2720 180 2 1,6
3 Кислород 215 170 2250 160 2,5 1,2
4 Кислород 220 88 1200 140 3 0,7
5 Воздух 275 127 1440 100 1,2 0,2

№ примера Процесс в реакторе Порошок SiO2
Угол раскрытия факела, ° Температура процесса, °С Выход, кг/ч Удельная поверхн. м2 Размер частиц, нанометр
1 170 2100 76 122 22
2 160 1700 62 117 23
3 150 1500 55 105 26
4 110 1000 48 112 24
5 70 1200 34 138 20

Формула изобретения

Способ получения высокодисперсного порошка диоксида кремния, включающий генерацию плазмы кислорода или кислородсодержащего газа, введение путем распиливания в поток газовой плазмы жидкого тетрахлорида кремния и последующее окисление тетрахлорида кремния кислородом или кислородсодержащим газом при температуре 1000÷2100°С и при соотношении молярных расходов тетрахлорида кремния и кислорода от 1,0 до 3,0, при этом распиливание жидкого тетрахлорида кремния производят соосно внутри и в направлении движения потока плазмы при давлении 0,2÷2,0 МПа с углом раскрытия факела распыливания 70÷170°.

РИСУНКИ

Categories: BD_2349000-2349999