Патент на изобретение №2347643

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2347643 (13) C1
(51) МПК

B22D27/20 (2006.01)
C22F3/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.09.2010 – может прекратить свое действие

(21), (22) Заявка: 2007124216/02, 27.06.2007

(24) Дата начала отсчета срока действия патента:

27.06.2007

(46) Опубликовано: 27.02.2009

(56) Список документов, цитированных в отчете о
поиске:
КУРДЮМОВ А.В. и др., Литейное производство цветных и редких металлов, М., Металлургия, 1982, с.231-234. RU 2003711 С1, 30.11.1993. SU 134954 А, 01.01.1961. SU 836132 А, 07.06.1981.

Адрес для переписки:

680035, г.Хабаровск, ул. Тихоокеанская, 136, Хабаровский государственный технический университет, Отдел интеллектуальной собственности

(72) Автор(ы):

Ри Эрнст Хосенович (RU),
Дорофеев Станислав Вячеславович (RU),
Ри Хосен (RU),
Кухаренко Елена Борисовна (RU),
Комков Вячеслав Григорьевич (RU),
Ширшов Андрей Павлович (RU)

(73) Патентообладатель(и):

Государственное образовательное учреждение высшего профессионального образования “Тихоокеанский государственный университет” (RU)

(54) СПОСОБ ОБРАБОТКИ ЖИДКИХ АЛЮМИНИЯ И СИЛУМИНА НАНОСЕКУНДНЫМИ ЭЛЕКТРОМАГНИТНЫМИ ИМПУЛЬСАМИ (НЭМИ) ДЛЯ ПОВЫШЕНИЯ ИХ ТЕПЛОПРОВОДНОСТИ

(57) Реферат:

Изобретение относится к металлургии. Расплав нагревают до температуры 900°С. После стабилизации температуры расплав обрабатывают наносекундными электромагнитными импульсами в течение 10-15 минут, затем охлаждают до комнатной температуры. Достигается повышение теплопроводности алюминия и силумина. 4 ил., 1 табл.

Изобретение относится к металлургии и литейному производству и может быть использовано для получения отливок, требующих высокой теплопроводности.

Известны способы обработки жидких алюминия и силумина, заключающиеся в удалении газов из алюминиевых расплавов методами вакуумирования, обработки их постоянным электрическим током, вакуумного рафинирования и др. [1], позволяющие повысить их теплопроводность. Недостатками этих способов являются большая энергоемкость и необходимость дорогостоящего оборудования.

Существует также способ обработки жидких алюминия и силумина, заключающийся в применении защитно-восстановительных флюсов, снижающих газонасыщенность расплава, удаляющих вредные примеси, уменьшающих безвозвратные потери металла.

Недостатками являются увеличение продолжительности процесса плавки и ухудшение санитарно-гигиенических условий труда в литейных цехах.

Все вышеперечисленные способы обработки жидких алюминия и алюминиевых сплавов (силуминов) не позволяют увеличивать теплопроводность в 1,5 и более раз.

В качестве наиболее близкого аналога по совокупности существенных признаков и назначению принят способ воздействия электромагнитным излучением на расплавленный металл и установка для его осуществления, раскрытый в RU 2198945 С2 [2].

Суть способа согласно изобретению заключается в облучении расплава наносекундными электромагнитными импульсами для повышения жидкотекучести по спиральной пробе при 650°С со 170 до 290 мм, относительного удлинения с 0,5-0,6% в необработанном образце до 1,0-1,2% в обработанном. При этом в затвердевшем металле изменяется форма зерна кремния в эвтектике с иглообразной до почти сферической в обработанном образце. На 15% увеличивается прочность на разрыв.

Недостаток этого способа заключается в том, что в техническом результате не предусмотрено повышение теплопроводности алюминия и его сплавов (силуминов), а рассматривается только вопрос о повышении жидкотекучести и механические свойства сплава марки АК 7 при облучении расплава НЭМИ.

Характеристики оборудования, используемого для обработки расплава НЭМИ, и методика определения теплопроводности алюминия и силуминов:

1. Генератор НЭМИ:

– полярность импульсов – положительная;

– амплитуда импульсов на нагрузке – 50 Ом – 6000 В;

– длительность импульсов на половинном уровне – 0,5 нс;

– максимальная допустимая частота следования генерируемых импульсов – 1 кГц;

– задержка выходного импульса относительно фронта импульса запуска – 120 нс;

– максимальный ток, потребляемый генератором во всем диапазоне питающих напряжений, не более 1,7 А при частоте 61 кГц.

2. Измерение теплопроводности на установке, изготовленной НПО «Дальстандарт», основанное на сравнении прохождения теплового потока через эталонный и исследуемый образцы; в качестве эталона использовался образец из нержавеющей стали 12Х18Н10Т диаметром 0,03 м и высотой 0,01 м; температура «холодного» и «горячего» блоков поддерживалась постоянной с погрешностью ±0,05°С с помощью термостатов; для измерения перепада температур на эталоне и «образце» использовались дифференциальные медьконстантановые термопары; регистрирующим прибором служил микровольт-микроамперметр Ф-116; с учетом утечки тепла на боковые теплопотери и потери, связанные с различными размерами образцов и нагревателей, а также с учетом погрешности измерения размеров образцов суммарная погрешность составила =10-15%.

Примеры реализации способа

Пример 1.

Нагревают алюминий (99,999% Al) до температуры 900°С, после стабилизации температуры обрабатывают жидкую фазу НЭМИ в течение 5, 10, 15 и 20 минут. После отключения генератора жидкий алюминий охлаждают со скоростью, реальной для данного процесса (20-100°С/мин). Теплопроводность алюминия измерялась при комнатной температуре (+20°С), фиг.1.

Как видно, максимальная теплопроводность наблюдается при обработке жидкой фазы алюминия в течение 10 минут по сравнению с теплопроводностью необработанного алюминия и она возрастает в 1,75 раз. При этом твердость (НВ) также повышается.

Пример 2.

Химический состав силуминов, применяемых при реализации предлагаемого способа.

Таблица 1.
Марка сплава Массовая доля основных компонентов, %
Mg Si Cu Mn Остальное Al
АЛ 9 (АК 7 ч) 0,2-0,4 6,0-8,0 93,8-91,6
АК7 0,2-0,5 6,0-8,0 0,2-0,6 93,6-90,5
А 390 17,0-18,0 4,0 78,0-79,0

Нагревают силумины до температуры 900°С, после стабилизации температуры обрабатывают жидкую фазу НЭМИ в течение 5, 10, 15 и 20 минут. После отключения генератора жидкий силумин охлаждают со скоростью, реальной для данного процесса (20-100°С/мин). Теплопроводность силуминов измерялась при комнатной температуре (+20°С), фиг.2, 3, 4.

Установлено, что:

– максимальная теплопроводность сплава А 390 наблюдается при продолжительности обработки жидкой фазы, равной 10 минутам; при этом теплопроводность возрастает соответственно в 1,3 раза; твердость также возрастает под воздействием НЭМИ;

– максимальная теплопроводность силуминов АЛ 9 и АК 7 наблюдается при обработке НЭМИ в течение 15 минут; теплопроводность силуминов возрастает в сплаве АЛ 9 в 1,5 раз, а в силумине АК 7 – более 2,0 раз; при этом также возрастают твердость, плотность и износостойкость;

– максимальное диспергирование первичного кремния и эвтектики наблюдается при продолжительности обработки жидкой фазы, соответствующей максимальным значениям теплопроводности.

Источники информации

1. В.И.Муравьев, В.И.Якимов, Хосен Ри и др. Изготовление литых заготовок в авиастроении. – Владивосток: Дальнаука. 2003. С.111-119.

2. Патент RU 2198945 С2 Способ воздействия электромагнитным излучением на расплавленный металл и установка для его осуществления. 27.11.2000. Крымский В.В., Кулаков Б.А., Знаменский А.Г., Дубровин В.К.

3. Ри Хосен, Баранов Е.М., Шпорт В.И. и др. Свойства алюминиевых сплавов (силуминов) в жидком и твердом состояниях. – Владивосток: Дальнаука, 2002. 141 с.

Формула изобретения

Способ обработки жидких алюминия и силумина, включающий обработку расплавов наносекундными электромагнитными импульсами, отличающийся тем, что для повышения теплопроводности алюминия и силумина их расплавы обрабатывают при температуре 900°С в течение 10-15 мин.

РИСУНКИ

Categories: BD_2347000-2347999