Патент на изобретение №2162458

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2162458 (13) C1
(51) МПК 7
C04B35/80
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 27.05.2011 – действует

(21), (22) Заявка: 99110315/03, 17.05.1999

(24) Дата начала отсчета срока действия патента:

17.05.1999

(45) Опубликовано: 27.01.2001

(56) Список документов, цитированных в отчете о
поиске:
RU 2076086 C1, 27.03.1997. SU 1094249 A1, 23.08.1991. US 4461842 A, 24.07.1984. EP 0866041 A2, 23.09.1998. FR 2499972 A, 20.08.1982.

Адрес для переписки:

141070, Московская обл., г. Королев, ул. Ленина 4а, ОАО “РКК “Энергия” им. С.П. Королева”, отдел промышленной собственности и инноватики

(71) Заявитель(и):

Открытое акционерное общество “Ракетно-космическая корпорация “Энергия” им. С.П. Королева”

(72) Автор(ы):

Крылова З.Ф.,
Андриянец В.Н.,
Красинский И.Э.,
Коршунов А.В.

(73) Патентообладатель(и):

Открытое акционерное общество “Ракетно-космическая корпорация “Энергия” им. С.П. Королева”

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО ЭЛЕКТРОИЗОЛЯЦИОННОГО СТЕКЛОТЕКСТОЛИТА


(57) Реферат:

Изобретение относится к электроизоляционным конструкционным стеклотекстолитам и может быть использовано в качестве электроизоляторов. Способ изготовления высокотемпературного электроизоляционного стеклотекстолита включает пропитку стеклоткани 15%-ным раствором кремнийорганической смолы, нанесение суспензии, состоящей из алюмофосфатного связующего и порошка оксида алюминия на заготовки стеклоткани, термообработку набранного пакета заготовок при конечной температуре 270°С с выдержкой из расчета 10-12 мин на 1 мм толщины под давлением 10 кгс/см2. После термообработки стеклотекстолит и суспензию того же состава подвергают вакуумированию, затем под вакуумом стеклотекстолит полностью погружают в суспензию, производят напуск атмосферы и выдерживают в течение 15-20 мин. Полученный материал сушат при 20-25°С в течение 6-12 ч и проводят повторную термообработку при конечной температуре 270°С . Технический результат изобретения – повышение механической прочности стеклотекстолита. 1 табл.


Изобретение относится к электроизоляционным конструкционным стеклотекстолитам и может быть использовано в качестве электрических изоляторов в ракетно-космической технике, в электрометаллургии и др. отраслях.

Известна огнеупорная масса для изготовления текстолитов, компаундов и клеев на основе электрокорунда, нитрида алюминия и алюмомагнийхромфосфатного связующего (см. патент РФ RU 2035432 С, кл.С 04 В 28/02), в котором раскрыт способ изготовления высокотемпературного электроизоляционного стеклотекстолита, включающий нанесение огнеупорной массы на заготовки стеклоткани, термообработку набранного пакета заготовок стеклоткани при конечной температуре 120oC со скоростью 0,5-1,0 oC/мин и выдержкой 10-15 ч или отверждение при комнатной температуре до 1-3 суток. Полученный стеклотекстолит обладает недостаточной механической прочностью.

Известен способ изготовления высокотемпературного электроизоляционного стеклотекстолита – патент РФ 2076086, кл. С 04 В 35/80, который включает пропитку стеклоткани 15%-ным раствором кремнийорганической смолы, нанесение суспензии, состоящей из алюмофосфатного связующего и порошка оксида алюминия на заготовки стеклоткани, термообработку набранного пакета заготовок при конечной температуре 270oC с выдержкой из расчета 10-12 мин на один мм толщины стеклотекстолита под давлением 10 кгс/см2.

Полученный стеклотекстолит обладает недостаточной механической прочностью.

Техническим результатом предложенного изобретения является повышение механической прочности стеклотекстолита.

Сущность изобретения заключается в том, что в способе изготовления высокотемпературного электроизоляционного стеклотекстолита, включающем пропитку стеклоткани 15 %-ным раствором кремнийорганической смолы, нанесение суспензии, состоящей из алюмофосфатного связующего и порошка оксида алюминия на заготовки стеклоткани, термообработку набранного пакета заготовок при конечной температуре 270oC с выдержкой из расчета 10-12 мин на 1 мм толщины под давлением 10 кгс/см2, после термообработки стеклотекстолит и суспензию того же состава подвергали вакуумированию, после чего стеклотекстолит под вакуумом полностью погружали в суспензию, производили напуск атмосферы и выдерживали в суспензии в течение 15-20 мин, сушили при температуре 20-25oC в течение 6-12 ч и производили повторную термообработку при конечной температуре 270oC.

В процессе вакуумирования поры стеклотекстолита продуваются, дегазируясь, очищаются одновременно от пыли, ворсинок стеклоткани, а из суспензии удаляется воздух, внесенный вместе с порошком корунда (проводится полная дегазация до окончания образования пузырей). Вакуумная пропитка стеклотекстолита суспензией того же состава способствует проникновению компонентов суспензии в поры стеклотекстолита, что обеспечивает получение стеклотекстолита повышенной плотности с более равномерной плотностью матрицы и соответственно повышенной механической прочностью.

В результате вакуумной пропитки пористость стеклотекстолита (25%) снижается до 16-18%, повышается плотность, а соответственно механическая прочность.

Исследования под микроскопом показали, что стеклотекстолит, полученный с использованием вакуумной пропитки в суспензии, имеет равномерную структуру без крупных раковин в матрице в отличие от прототипа. Пропитка суспензией происходит на всю толщину стеклотекстолита, при этом наблюдается заполнение пор между волокнами.

Способ изготовления высокотемпературного электроизоляционного стеклотекстолита заключается в том, что на заготовки стеклоткани, пропитанные 15 %-ным раствором кремнийорганической смолы КМ-9К, наносили суспензию, состоящую из алюмофосфатного связующего и порошка оксида алюминия, набранный пакет подвергали термообработке при конечной температуре 270oC с выдержкой из расчета 10-12 мин на 1 мм толщины под давлением 10 кгс/см2. После термообработки заготовки стеклотекстолита и суспензию того же состава подвергали вакуумированию, затем под вакуумом стеклотекстолит полностью погружали в суспензию, производили напуск атмосферы, выдерживали в течение 15-20 мин, сушили при температуре 20-25oC в течение 6-12 ч и произвели повторную термообработку при конечной температуре 270oC.

Пример 1. На заготовки стеклоткани, пропитанные 15 %-ным раствором кремнийорганической смолы КМ-9К, наносили суспензию, состоящую из алюмофосфатного связующего и порошка оксида алюминия, набранный пакет подвергали термообработке при конечной температуре 270oC с выдержкой из расчета 10-12 мин на 1 мм толщины под давлением 10 кгс/см2. После термообработки стеклотекстолит и суспензию того же состава подвергали вакуумированию, затем под вакуумом стеклотекстолит полностью погружали в суспензию, производили напуск атмосферы и выдерживали в течение 15 мин, сушили при температуре 20-25oC в течение 6 ч и производили повторную термообработку при конечной температуре 270oC.

Полученный стеклотекстолит имел следующие характеристики:
Объемная масса, кг/м3 – 2400
Предел прочности при сжатии параллельно слоям стеклоткани, кгс/см3 – 950
Предел прочности при сжатии перпендикулярно слоям стеклоткани, кгс/см2 – 3100
Удельная ударная вязкость, кгссм/см2 – 75
Пример 2. То же, что и в примере 1, в отличие от которого стеклотекстолит выдерживали в суспензии в течение 20 мин.

Полученный стеклотекстолит имеет характеристики, аналогичные примеру 1.

Пример 3. То же, что и в примере 1, в отличие от которого стеклотекстолит выдерживали в суспензии в течение 17,5 мин.

Полученный стеклотекстолит имел характеристики, аналогичные примеру 1.

Пример 4. То же, что и в примере 1, в отличие от которого стеклотекстолит выдерживали в суспензии в течение 14 мин.

Полученный стеклотекстолит имел прочностные характеристики на 10% ниже, чем в примере 1. Очевидно, пропитка стеклотекстолита происходит не полностью.

Пример 5. То же, что и в примере 1, в отличие от которого стеклотекстолит выдерживали в суспензии в течение 21 мин.

Полученный стеклотекстолит имел прочностные характеристики, аналогичные примеру 1. Очевидно, дальнейшее увеличение времени выдержки стеклотекстолита в суспензии не влияет на полноту пропитки.

Пример 6. То же, что и в примере 1, в отличие от которого сушка пропитанных изделий при температуре 20-25oC производилась в течение 12 ч.

Полученный стеклотекстолит имел следующие характеристики:
Объемная масса, кг/м3 – 2200
Предел прочности при сжатии параллельно слоям стеклоткани, кгс/см3 – 800
Предел прочности при сжатии перпендикулярно слоям стеклоткани, кгс/см2 – 2900
Удельная ударная вязкость, кгссм/см2 – 65
Пример 7. То же, что и в примере 1, в отличие от которого сушка пропитанных изделий при температуре 20 – 25oC производилась в течение 9 ч.

Полученный материал имел характеристики, аналогичные примеру 1.

Пример 8. То же, что и в примере 1, в отличие от которого сушка пропитанных изделий при температуре 20-25oC производилась в течение 5 ч.

Полученный стеклотекстолит имел прочностные характеристики на 10% ниже, чем в примерах 1-3.

Пример 9. То же, что и в примере 1, в отличие от которого сушка пропитанных изделий при температуре 20-25oC производилась в течение 13 ч.

Полученный стеклотекстолит имел предел прочности при сжатии параллельно слоям стеклоткани, а также перпендикулярно слоям стеклоткани на 20% меньше, чем в примерах 1-3. Очевидно, увеличение времени сушки приводит к частичному разрушению армирующего стекловолокна за счет действия кислого связующего.

Пример 10. То же, что и в примере 1, в отличие от которого изделие из стеклотекстолита погружали в суспензию только до половины.

Полученный стеклотекстолит имел прочностные характеристики на 15% ниже, чем в примерах 1-3.

Пример 11. То же, что и в примере 1, в отличие от которого изделие подвергали вакуумной пропитке без предварительного вакуумирования.

Полученный стеклотекстолит имел прочностные характеристики на 20% ниже, чем в примерах 1-3.

Таким образом, стеклотекстолит, полученный с использованием предлагаемых нами технологических приемов, имеет существенные преимущества по сравнению с прототипом по механической прочности.

В таблице 1 приведены сравнительные характеристики стеклотекстолита по примерам 1-3 и прототипа.

Формула изобретения


Способ изготовления высокотемпературного электроизоляционного стеклотекстолита, включающий пропитку стеклоткани 15%-ным раствором кремнийорганической смолы, нанесение суспензии, состоящей из алюмофосфатного связующего и порошка оксида алюминия на заготовки стеклоткани, термообработку набранного пакета заготовок при конечной температуре 270oC с выдержкой из расчета 10 – 12 мин на 1 мм толщины под давлением 10 кгс/см2, отличающийся тем, что после термообработки стеклотекстолит и суспензию того же состава подвергают вакуумированию, затем под вакуумом стеклотекстолит полностью погружают в суспензию, производят напуск атмосферы, выдерживают в течение 15 – 20 мин, сушат при 20 – 25oC в течение 6 – 12 ч и производят повторную термообработку при конечной температуре 270oC.

РИСУНКИ

Рисунок 1


QA4A Сведения о заявлении обладателя патента Российской Федерации на изобретение о предоставлении любому лицу права на использование изобретения (открытая лицензия)

(54) Способ изготовления высокотемпературного электроизоляционного стеклотекстолита

Номер и год публикации бюллетеня: 3-2001

(73) Патентообладатель:

ОАО “Ракетно-космическая корпорация “Энергия” им. С.П. Королева”

Адрес для переписки:

141070, Московская обл., г. Королев, ул. Ленина, 4-а

Извещение опубликовано: 10.03.2005 БИ: 07/2005


Categories: BD_2162000-2162999