Патент на изобретение №2344183
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(54) СПОСОБ ОТЖИГА РУЛОНОВ ХОЛОДНОКАТАНЫХ ПОЛОС
(57) Реферат:
Изобретение относится к области металлургии и может быть использовано при рекристаллизационном отжиге холоднокатаных полос из низкоуглеродистой стали, смотанных в рулоны, в одностопной муфельной печи с газовым отоплением и водородной защитной атмосферой. Для сокращения длительности отжига и энергозатрат при одновременном повышении качества полос рулоны полос нагревают со средней скоростью 30-75°С/ч до температуры отжига 690-710°С, по достижении которой их охлаждают сначала со скоростью 2-5°С/ч до 660-680°С, затем со скоростью 10-30°С/ч до 640-660°С, при этом от температуры 640-660°С рулоны охлаждают с произвольной скоростью. 1 з.п. ф-лы, 1 табл.
Изобретение относится к области металлургии и может быть использовано при рекристаллизационном отжиге холоднокатаных полос из низкоуглеродистой конструкционной стали, смотанных в рулоны, в одностопной муфельной печи с газовым отоплением и водородной защитной атмосферой. Известен способ отжига рулонов холоднокатаных полос из низкоуглеродистой конструкционной стали в колпаковой печи, включающий их одноступенчатый нагрев до температуры отжига 670-710°С, выдержку при температуре отжига и последующее охлаждение [1]. Недостатки известного способа состоят в его большой продолжительности: время нагрева и выдержки рулонов при температуре отжига составляет около 50 ч. В результате увеличиваются энергозатраты на отжиг и снижается производительность колпаковой печи. Известен также способ отжига холоднокатаных полос из низкоуглеродистой стали, смотанных в рулоны, в муфельной колпаковой печи, включающий нагрев стопы рулонов до температуры отжига 710-730°С, выдержку при температуре отжига и охлаждение до температуры 90°С. При этом в температурном интервале 200-570°С нагрев ведут со скоростью 80-90°С/ч, затем нагрев ведут до температуры 640-660°С со скоростью 20-30°С/ч и завершают нагрев со скоростью 20-25°С/ч [2]. Недостатки известного способа состоят в больших энергозатратах на нагрев и выдержку, общая продолжительность которых превышает 30 ч. Сокращение продолжительности нагрева и выдержки приводит к ухудшению качества холоднокатаных полос. Наиболее близким аналогом к предлагаемому изобретению является способ термической обработки холоднокатаной полосы (жести) из низкоуглеродистой стали, включающий нагрев рулонов со скоростью 38-55°С/ч до промежуточной температуры 520-550°С, выдержку в течение 18-22 ч, повторный нагрев со скоростью 15-30°С/ч до температуры отжига 680-690°С, выдержку в течение 20-24 ч и охлаждение вначале со скоростью 35-50°С/ч до температуры 420-430°С, а затем с произвольной скоростью [3]. Недостатки известного способа состоят в большой продолжительности отжига (выдержка при промежуточной температуре и температуре отжига составляет 44 ч) и энергозатратах, а также низком качестве полос конструкционного назначения по механическим свойствам (высоким пределам прочности, текучести, твердости, низкому относительному удлинению). Техническая задача, решаемая изобретением, состоит в сокращении времени отжига и энергозатрат при одновременном повышении качества полос. Для решения поставленной технической задачи в известном способе отжига рулонов холоднокатаных полос из низкоуглеродистой стали, включающем их нагрев до температуры отжига 690-710°С и последующее охлаждение с регламентированными скоростями, согласно предложению нагрев до температуры отжига ведут со средней скоростью 30-75°С/ч, по достижении которой рулоны охлаждают вначале со скоростью 2-5°С/ч до температуры 660-680°С, затем со скоростью 10-30°С/ч до температуры 640-660°С. Кроме того, от температуры 640-660°С рулоны охлаждают с произвольной скоростью. Сущность предложенного технического решения состоит в следующем. В процессе нагрева рулонов холоднокатаных полос из низкоуглеродистой стали со средней скоростью 30-75°С/ч происходит полное растворение в ферритной матрице низкоуглеродистой стали карбидных и нитридных частиц, что необходимо для улучшения механических свойств отожженных полос. Помимо этого, при указанной скорости нагрева исключается возможность сваривания и слипания витков рулонов. При достижении температуры отжига 690-710°С интенсифицируются процессы рекристаллизации деформированных при холодной прокатке зерен и их фрагментов. Последующее незамедлительное понижение температуры до 660-680°С со скоростью 2-5°С обеспечивает торможение процессов рекристаллизации зерен, которые при холодной прокатке накопили максимальное количество энергии. Благодаря этому процессы рекристаллизации протекают более равномерно по всему объему металла, низкоуглеродистая сталь приобретает равномерное состояние твердого -раствора. Рекристаллизованная микроструктура феррита становится гомогенной с номером балла 8. Исключение необходимости выдержки рулонов при температуре отжига 690-710°С уменьшает продолжительность отжига и энергозатраты. Кроме того, поскольку в период снижения температуры от 690-710°С до 660-680°С со скоростью 2-5°С/ч газовые горелки работают с пониженной тепловой мощностью, достигается дополнительная экономия топлива. Замедленное охлаждение от температуры 660-680°С до 640-660°С со скоростью 10-30°С/ч приводит к полному выделению из ферритной матрицы карбидов и нитридов (типа Fe4N), их коагуляции в округлые частицы диаметром 70-200 нм. Плотность распределения карбидных и нитридных частиц в ферритной матрице снижается. Поэтому к моменту окончания замедленного охлаждения микроструктура стали переходит в стабильное равновесное состояние, отожженная низкоуглеродистая сталь приобретает повышенный комплекс механических свойств. Благодаря этому дальнейшее охлаждение отожженных рулонов можно вести с произвольной скоростью без ухудшения механических свойств конструкционной низкоуглеродистой стали. Поскольку в период охлаждения со скоростью 10-30°С/ч газовые горелки выключены, достигается снижение энергозатрат, а процессы отжига завершаются за счет запаса тепла печи и рулонов. Экспериментально установлено, что снижение температуры отжига менее 690°С приводит к тому, что структура отожженной стали сохраняет остаточные явления наклепа (строчечная структура, для которой характерны низкие механические свойства). Увеличение температуры отжига выше 710°С приводит к чрезмерному росту зерен микроструктуры и появлению ее разнобалльности, что ухудшает качество отожженных полос и увеличивает продолжительность отжига и энергозатраты. Снижение средней скорости нагрева менее 30°С/ч увеличивает продолжительность нагрева и энергозатраты. Увеличение скорости нагрева более 75°С/ч приводит к росту температурных напряжений и свариванию витков рулонов. Охлаждение рулонов от температуры 690-710°С со скоростью менее 2°С/ч приводит к росту размеров зерен феррита и их неравномерности, что ухудшает качество отожженных холоднокатаных полос, увеличению энергозатрат и продолжительности отжига. Увеличение скорости охлаждения более 5°С/ч приводит к получению мелкозернистой структуры, ухудшению выделения из ферритной матрицы карбидных и нитридных частиц, увеличению прочности и снижению пластичности отожженной низкоуглеродистой стали. При скорости охлаждения менее 10°С/ч или температуре его окончания ниже 640°С снижается прочность и пластичность низкоуглеродистой стали из-за увеличения разнобалльности микроструктуры, возрастает продолжительность отжига. Увеличение скорости охлаждения более 30°С/ч или температуры его окончания выше 660°С не обеспечивает завершение выделения из ферритной матрицы карбидных и нитридных частиц, что ухудшает качество отожженных полос. Окончательное охлаждение рулонов от температуры 640-660°С с произвольной скоростью не оказывает влияния на качество отожженных полос из низкоуглеродистой стали и не требует энергозатрат. Пример реализации способа Холоднокатаные рулоны массой до 24 т из низкоуглеродистой конструкционной стали марки 08пс устанавливают в 4 яруса на стенде одностопной колпаковой печи. Стопу рулонов накрывают муфелем и нагревательным колпаком, после чего подмуфельное пространство в течение 30 мин продувают азотом для удаления воздуха. Затем в подмуфельное пространство подают водород, который вытесняет азот. Включают газовые горелки нагревательного колпака и производят нагрев рулонов со средней скоростью Vн=50°С/ч. Заданную скорость нагрева устанавливают изменением расхода сжигаемого топливного газа. Нагрев рулонов ведут до температуры отжига То=700°С. После достижения температуры отжига То=700°С подачу топлива в горелки нагревательного колпака уменьшают, благодаря чему происходит охлаждение рулонов со скоростью V1=3,5°С/ч. С данной скоростью рулоны охлаждают до температуры Tохл1=670°C. Затем газовые горелки выключают и осуществляют охлаждение рулонов со скоростью V2=20°С/ч до температуры Тохл2=650°С. Заданную скорость охлаждения обеспечивают путем дозированной подачи в подмуфельное пространство холодного водорода. После достижения температуры Tохл2=650°С со стенда печи снимают нагревательный колпак и производят окончательное ускоренное охлаждение садки рулонов до температуры распаковки 90°С за счет продувки подмуфельного пространства холодным водородом. Отожженные стальные полосы не имеют дефектов поверхности и полностью соответствуют комплексу механических свойств по ГОСТ 9045. Удельный расход условного топлива при отжиге составляет: Q=0,35 ГДж на 1 т холоднокатаной полосы, продолжительность отжига сокращается до =22,17 ч. Варианты реализации способа отжига рулонов холоднокатаных полос из низкоуглеродистой стали в печи с газовым отоплением и показатели их эффективности представлены в таблице. Из таблицы следует, что при реализации предложенного способа (варианты №2-4) достигается сокращение длительности отжига и уменьшение энергозатрат (удельный расход условного топлива на тонну отжигаемой холоднокатаной полосы минимален, продолжительность отжига ниже, чем в способе-прототипе (вариант №6), при одновременном повышении качества холоднокатаных полос по механическим свойствам. В случаях запредельных значений заявленных параметров (вариант №1) имеет место увеличение энергозатрат и продолжительности отжига при ухудшении механических свойств отожженных полос; при запредельных значениях (вариант №5) механические свойства не отвечают требованиям ГОСТ 9045. При реализации способа-прототипа (вариант №6) имеет место удлинение продолжительности отжига, увеличение расхода топлива, снижение качества конструкционной низкоуглеродистой стали. Технико-экономические преимущества предложенного способа состоят в том, что при заявленных температурно-скоростных режимах исключается необходимость изотермической выдержки при температуре отжига. Отжиг протекает в процессе охлаждения со скоростью 2-5°С/ч в температурном интервале от 690-710 до 660-680°С и при повторном охлаждении со скоростью 10-30°С/ч до температуры 640-680°С при выключенных горелках нагревательного колпака. За счет этого обеспечивается сокращение длительности отжига и энергозатрат при одновременном повышении качества полос. В качестве базового объекта при определении технико-экономических преимуществ предложенного способа принят способ-прототип. Использование предложенного способа обеспечит повышение рентабельности производства холоднокатаной конструкционной низкоуглеродистой стали на 12-15%. Литературные источники 1. С.С.Гусева и др. Непрерывная термическая обработка автолистовой стали. М.: Металлургия, 1979 г., с.24-25. 2. Патент Российской Федерации №2280701, МПК C21D 9/48, C21D 8/04, 2006 г. 3. Авт. свид. СССР №1659500, МПК C21D 9/46, 1991 г. – прототип.
Формула изобретения
1. Способ отжига рулонов холоднокатаных полос из низкоуглеродистой стали, включающий нагрев до температуры отжига 690-710°С и последующее охлаждение с регламентированными скоростями, отличающийся тем, что нагрев до температуры отжига ведут со средней скоростью 30-75°С/ч, по достижении которой рулоны охлаждают вначале со скоростью 2-5°С/ч до температуры 660-680°С, затем со скоростью 10-30°С/ч до температуры 640-660°С. 2. Способ по п.1, отличающийся тем, что от температуры 640-660°С рулоны охлаждают с произвольной скоростью.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||