Патент на изобретение №2342359

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2342359 (13) C2
(51) МПК

C07C51/21 (2006.01)
C07B33/00 (2006.01)
C07C27/14 (2006.01)
B01J3/00 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.09.2010 – может прекратить свое действие

(21), (22) Заявка: 2006115724/04, 06.05.2006

(24) Дата начала отсчета срока действия патента:

06.05.2006

(43) Дата публикации заявки: 20.11.2007

(46) Опубликовано: 27.12.2008

(56) Список документов, цитированных в отчете о
поиске:
Кухаренко Т.А. Окисленные в пластах бурые и каменные угли. – М.: Наука, 1972, с.187-202. RU 2145626 C1, 20.02.2000. Сорокин А.П. и др. «Проблема комплексной переработки углей технологической группы IБ в Амурской области», проблемы экологии и рац. использования природных ресурсов в Дальневосточном регионе: Материалы региональной научно-практической конференции. – Благовещенск, 2004, т.1, Изд-во БГПУ, с.103-105.

Адрес для переписки:

675000, г.Благовещенск, пер. Релочный, 12, кв.310, М.Н. Савченко

(72) Автор(ы):

Савченко Илья Федорович (RU),
Савченко Александр Ильич (RU),
Сорокин Анатолий Петрович (RU)

(73) Патентообладатель(и):

ООО “ХИМТЕХУГОЛЬ” (RU)

(54) СПОСОБ ПОЛУЧЕНИЯ ОРГАНИЧЕСКИХ КИСЛОТ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

(57) Реферат:

Изобретение относится к усовершенствованному способу получения органических кислот, включающему дробление угля или торфа, приготовление водно-щелочной суспензии, периодическое заполнение реактора окисления, нагрев суспензии в реакторе, окисление ее кислородом воздуха при повышенных термобарических условиях, охлаждение продуктов окисления, вывод их из реактора и выделение целевых кислот, в котором для окисления используют безбалластную суспензию, приготовленную кипячением смеси сухого угля или торфа, NaOH и воды, охлаждением указанной смеси, отстаиванием, сливом с осадка, сгущением слива и при необходимости добавлением NaOH, причем безбалластная суспензия имеет следующий состав: органические вещества угля или торфа – 15-25%, NaOH – 3,5-5%, остальное – вода, суспензию впрыскивают в реактор в объем адиабатически сжатого в 14-21 раз воздуха до давления 3,5-5,5 МПа и адиабатически разогретого до 700-900K на время 10-2-10-3 с из расчета 1 г органических веществ суспензии на 1,2 и более литров воздуха при нормальных условиях, затем осуществляют стабилизацию и закалку продуктов окисления, адиабатически их расширяя, стабилизованные и закаленные продукты окисления выводят из реактора и выделяют из них целевые кислоты или их фракции. Изобретение относится также к устройству для осуществления способа получения органических кислот, включающему дизельный двигатель, работающий по 2-х или 4-х тактному циклу, в котором в качестве реактора используют дизельный двигатель, дополнительно имеющий внешний постоянный привод коленчатого вала, топливный насос и форсунки, а топливный насос и форсунки обеспечивают распыление суспензии из расчета 1 г органических веществ на 1,2 и более литров воздуха при нормальных условиях. Изобретение направлено на повышение производительности и эффективности производства органических кислот путем сокращения времени окисления, снижения содержания балласта, уменьшения расходов щелочи и воздуха, а также утилизации кинетической энергии газов окисления. 2 н.п. ф-лы, 4 табл.

Изобретение относится к химической промышленности, а точнее к углехимической.

Органические кислоты из окисленных каменных углей, бурых углей и торфа, а также продуктов их переработки получают путем окисления их водно-щелочных суспензий кислородом воздуха в термобарических условиях. Окисленные суспензии очищают от минеральных и непрореагировавших примесей, а затем выделяют целевые фракции кислот или индивидуальные органические кислоты.

Существует оптимальный способ окисления суспензии остатка от гидролиза торфа (ОГ) в водно-щелочной среде при постоянных давлении и температуре с проточным по отношению к суспензии подогретым воздухом [1, прототип)] (Косоногова Л.В. Евдокимова Г.А. Биохимическая переработка остатка от гидролиза торфа. В кн. Получение дрожжей из торфа. Минск: Наука и техника, 1977, С.173-190).

Согласно прототипу 2 литра подготовленной суспензии загружают в реактор объемом 4 литра, нагревают в реакторе до 190-200°С, воздух подогревают в электроподогревателе и закачивают в реактор, где он окисляет суспензию при давлении 4 МПа. Оптимальная концентрация органического вещества (ОВ) в суспензии 100 г/л, содержание щелочи 50% на окисляемую навеску, давление в реакторе окисления 4.0 МПа, температура внутри реактора 190-200°С, расход воздуха 2,0-2,5 литра на 1 грамм окисляемого материала в час, время окисления 5 часов [1. C.176]. Авторы прототипа отмечают, что с увеличением содержания NaOH в реакционной среде глубина окисления возрастает, щелочь связывает карбоновые кислоты, предотвращая как их окислительный распад, так и конденсацию продуктов реакции [1. C.177]. При оптимальном ведении процесса окисления выход низкомолекулярных кислот (НМК) к окисляемому сырью составляет 32-37%, высокомолекулярных кислот (ВМК) – 37-41%, CO2 и потери – 22.5-25,0%, твердый остаток – 2.5-8,5%.

Известен способ одностадийного жидкофазного окисления углей с целью получения органических кислот [2, аналог] (Кухаренко Т.А. Окисленные в пластах бурые и каменные угли. М.: Наука, 1972, С.187-202). По этому способу окисление суспензии с оптимальным соотношением угля, соды и воды, равным 1:3:16,8, проводят при давлении до 10 МПа и температуре 270°С при подаче в реакционную среду предварительно подогретого воздуха и при интенсивном перемешивании.

Этот способ реализован с помощью реактора объемом 3 литра. Реактор выполнен в виде автоклава с внешним обогревом и снабжен мешалкой. Для подачи воздуха существует компрессор, а для его подогрева – электроподогреватель. Газы окисления дросселируют и выбрасывают в атмосферу. По этому способу суспензию с оптимальным соотношением угля, соды и воды загружают в реактор периодически, а воздух прокачивают непрерывно. За продолжительность окисления принимают время пребывания суспензии угля в реакторе при заданной температуре, давлении и расходе окислителя. Суммарные продукты окисления очищают от зольных веществ и не прореагировавшего угля. Из водно-щелочного окисленного раствора выделяют группы органических кислот или индивидуальные кислоты.

Известен также способ окисления торфа кислородом воздуха в водно-щелочной среде [3, второй аналог] (Маякова Е.Ф. Окисление торфа и использование продуктов окисленной деструкции. В кн. Справочник по торфу. М.: Наука. 1982 г. С.555-556).

Для получения НМК окисление проводят при давлении 3-3,5 МПа и температуре 200-225°С, продолжительность окисления 3 часа. ВМК получают окислением суспензии при 120-160°С и давлении 1,0-1,5 МПа. Продолжительность окисления 1,5-2,0 часа. Водно-щелочную суспензию торфа концентрацией 150-200 г/л предварительно гидролизуют в течение 1 часа. Гидролизованный торф транспортируют в реактор газлифтного типа, куда подают предварительно подогретый до 150°С воздух, где он окисляет торф при перемешивании. Газы окисления дросселируют и выбрасывают в атмосферу. Продукты окисления охлаждают в холодильнике и нейтрализуют, твердый остаток отделяют от водно-щелочного раствора. Окисленные продукты водно-щелочного раствора разделяют на НМК и ВМК, которые затем направляют на дальнейшую переработку.

При осуществлении трех приведенных способов [1, 2, 3] получения органических кислот путем окисления водно-щелочных суспензий углей или торфа в состав продуктов окисления входят летучие с паром кислоты, ВМК и НМК, твердый неокисленный остаток, CO2 плюс потери. Расчет расхода кислорода на окисление одного грамма органического вещества суспензии по экспериментальным данным прототипа [1. С.178-180] помещен в таблицы 1 и 2.

В таблице 1 приведен элементный состав остатка от гидролиза торфа (ОГ) и продуктов его окислительной деструкции, а также выход этих продуктов в расчете на окисляемую навеску. В таблице 2 приведен элементный состав продуктов окисления в пересчете на величину выхода каждого продукта. Согласно условию реакций окисления в балансе элементов продуктов окисления остается неизменным количество углерода, азота и водорода. Переменная величина – содержание кислорода, который потребляется из прокачиваемого воздуха.

Таблица 1
Элементный состав остатка от гидролиза торфа (ОГ), продуктов окисления (ОГ) и выход продуктов окисления
№ пп Продукты окисления ОГ Выход продуктов окисления, % Элементный состав продуктов окисления, % Источник информации
С Н O N Сумма
1 2 3 4 5 6 7 8 9
1 ОГ комплексно-верхового торфа 100 61,8 6,4 31,0 0,8 100 [1. С.178]
2 Летучие с паром (по уксусной) 8,2 40,0 6,67 53,33 100
3 НМК 36,4 42,0 5,7 51,9 0,4 100 [1. С.178-180]
4 ВМК 30,3 57,3 5,4 36,6 0,7 100
5 Твердый остаток 8,4 61,8 6,4 31,0 0,8 100
6 CO2 + потери 16,7 27,27 72,73 100
Таблица 2
Выход и элементный состав выхода продуктов окисления торфа ОГ
№п/п Продукты окисления Выход продуктов окисления, % Содержание элементов в продуктах окисления: 1 – % в продукте; 2 – % от выхода
С Н O N
1 2 1 2 1 2 1 2
1 Летучие с паром кислоты (по уксусной кислоте) 8,2 40,0 3,28 6,67 0,55 53,33 4,37
2 НМК 36,4 42,0 15,29 5,7 2,07 51,9 18,89 0,4 0,15
3 ВМК 30,0 57,3 17,36 5,4 1,64 36,6 11,09 0,7 0,21
4 Твердый остаток 8,4 61,8 5,19 6,4 0,54 31,0 2,60 0,8 0,07
5 СО2+потери 16,7 27,27 4,55 72,73 12,15
6 Всего в продуктах окисления 100 45,67 4,8 49,10 0,43
7 Окисляемое сырье – ОГ комплексно-верхового торфа 100 61,8 6,4 31,0 0,8
8 Масса продуктов окисления от исходного сырья:
– по содержанию углерода 61,8%: 45,67×100=135,3%;
– по содержанию водорода 6,4%: 4,8%×100=133,3%
Это увеличение происходит за счет потребленного кислорода при окислении и равно 33,3-35,3% от массы окисляемой органики.

Из таблицы 2 следует, что расход кислорода воздуха равен 35,3% массы окисляемого органического вещества, что соответствует расходу на окисление 1 грамма органических веществ около 1,2 литра воздуха при нормальных условиях. В прототипе указан фактический расход воздуха 10-12,5 литров на 1 г ОВ, т.е. в 8,3-10,4 раза больше расчетного, что является существенным недостатком способа.

Как в прототипе [1], так и в аналогах [2, 3] суспензию готовят из натурального угля, остатка от гидролиза торфа или исходного торфа с естественной для них зольностью. Наличие балласта в виде золы в исходном сырье, а также стойких к окислению веществ ухудшает показатели процесса получения органических кислот.

В таблице 3 приведены некоторые сведения о зольности сухого вещества углей и торфа, элементный состав органической массы, выход гуминовых кислот от органической массы и суммарная относительная масса балласта в сырье. Приведен также элементный состав экстрагируемых щелочью гуминовых кислот.

Таблица 3
Зольность, элементный состав окисленных углей и торфа; выход и состав гуминовых кислот; относительная масса балласта
Сырье Зольность сухого вещества, % Элементный состав органической массы, % Выход гуминовых кислот на органическую массу, % Сумма балласта на сухое вещество, % Источник информации
С Н O N
1 2 3 4 5 6 7 8 9
Каменный тощий уголь 13,96 74,85 2,78 19,96 42,4 63,5 [2, C.108-
15,28 73,04 2,72 21,92 64,9 45,0 109]
48,93 67,36 3,12 26,44 78,1 60,1
Каменный газовый уголь 11,14 63,25 4,75 29,11 65,2 42,1
9,47 67,41 4,12 25,60 80,6 27,0
Бурый бородинский 18,55 61,72 3,53 33.24 1,51 29,3 76,1 [2. C.141]
Бурый абанский 20,7 65,72 4,31 28,85 1,12 75,5 40,1
25,64 64,03 4,65 30.18 1,14 86,8 35.4
Пробы бурого угля Сергеевского месторождения Амурской области 19,8 61,1-66,7 5,2-6,1 26,5-31,5 0,7 57,2-68,7 44,9-54,1 ООО “Химтехуголь”
Торф низинный 7,3 58,0 5,8 33.1 2,6 55,5 48,6 [3, с.27]
ОГ верхового торфа 61,80 6,40 31,00 0,8 [1, с.178-180]
Гуминовые кислоты:
газового угля 64,95 4,19 28,02 [2, с.113]
тощего угля 69,56 2,42 26,13
торфа верхового 62.92 6,11 29,75 1,22

В таблице 3 колонке 8 показана относительная величина выхода балласта по приводимому сырью как сумма зольных веществ и глубоко карбонизированного остатка. Наибольшая величина 63,5 и 76,1% принадлежат тощему каменному углю и бурому бородинскому. Бурый абанский уголь содержит всего 35,4% балласта, но и эта величина при крупнотоннажном производстве является существенным недостатком способа в прототипе и аналогах.

В прототипе [1] и аналогах [2 и 3] существенными признаками являются удельный расход щелочи (соды) к органическому веществу, равный 0,5-3,0, постоянство давлений и температур в реакторе, применение проточного по отношению к суспензии окислителя, длительность периода окисления от 1,5 до 5 часов.

Существенные недостатки способов в прототипе и аналогах следующие: длительность процесса, достигающая 5 часов, периодичность загрузки, невозвратные потери энергии сжатого воздуха и газов окисления, большой удельный расход щелочи, которая необходима для предотвращения распада и конденсации продуктов окисления, многократный избыток воздуха и участие в реакционной смеси балласта из зольных веществ и устойчивых к окислению фракций угля или торфа.

Сущность изобретения состоит в том, что для получения органических кислот используют безбалластную торфяную или угольную водно-щелочную суспензию следующего состава, мас.%: органическое вещество угля или торфа 15-25%, NaOH – 3,5-5%, остальное вода. Получение органических кислот осуществляют в переменных термобарических условиях. Количество окисляемой суспензии берут из расчета 1 грамм ОВ суспензии на 1,2 и более литров воздуха. При этом окисление осуществляют путем распыления суспензии в объем адиабатически сжатого воздуха при 14-21 кратной степени сжатия, время окисления составляет 10-2÷10-3 с. С целью сокращения удельного расхода щелочи, предотвращения процессов как распада, так и конденсации производят стабилизацию и закалку продуктов окисления путем их адиабатического расширения. При 14-21 кратной степени сжатия воздуха его давление в конце сжатия достигает 3,5-5,5 МПа, а температура поднимается до 700-900K.

Окисленные, закаленные и стабилизованные продукты окисления выводят из реактора, а затем выделяют из них целевые фракции кислот или индивидуальные кислоты.

Для получения безбалластной суспензии готовят смесь следующего состава, мас.%: сухой уголь или торф 18%, NaOH 1-2%, остальное – вода. Смесь при перемешивании кипятят один час, затем охлаждают и отстаивают одни сутки, сливают с осадка, а из слива готовят суспензию необходимого состава путем его сгущения и при необходимости добавления NaOH.

Для осуществления предлагаемого способа получения органических кислот применяют реактор с поршнем, обеспечивающим сжатие воздуха при поступательном движении поршня, а расширение и охлаждение прореагировавшей смеси – при возвратном движении поршня. Требуемые переменные термобарические условия для получения органических кислот получают, применив для этой цели дизельный двигатель, работающий по 4-х тактному или 2-х тактному циклу. Степень сжатия воздуха в дизельных двигателях 14-21 кратная, давление достигает 3,5-5,5 МПа, а температура при сжатии поднимается до 700-900K [4]; (Ховах М.С. Маслов Г.С. Автомобильные двигатели. М.: Машиностроение, 1971, с.114-116). Длительность впрыска и окисления в цилиндре дизеля равно 10-2÷10-3 с и зависит от скорости вращения коленчатого вала. Цилиндропоршневая группа дизелей одновременно с расширением и охлаждением продуктов окисления позволяет утилизовать кинетическую энергию газов окисления и использовать ее для поддержания процесса.

Техническим результатом применения дизельного двигателя в качестве реактора окисления является возможность утилизации кинетической энергии газов окисления и исключение необходимости внешнего обогрева суспензии в реакторе до температуры реакции окисления.

Реализуют предлагаемый способ получения органических кислот следующим образом. Из угля или торфа формируют безбалластную суспензию выше описанным способом. Безбалластную суспензию окисляют кислородом воздуха, а в качестве реактора окисления применяют дизельный двигатель, работающий по 4-х или 2-х тактному циклу. Двигатель снабжают внешним постоянным приводом коленчатого вала, топливным насосом высокого давления и форсунками, обеспечивающими образование реакционной смеси из суспензии и воздуха в соотношении 1,2 и более литров воздуха при нормальных условиях на 1 г ОВ суспензии. Окисление суспензии осуществляют следующим образом. Воздух в цилиндре реактора предварительно сжимают адиабатически в 14-21 раз, при этом давление возрастает до 3,5-5,5 МПа, а температура повышается до 700-900K. В сжатый воздух топливным насосом через форсунки впрыскивают суспензию, распыляя и окисляя ее в объеме сжатого горячего воздуха из расчета 1 г ОВ суспензии на 1,2 и более литров воздуха при нормальных условиях. Длительность окисления 10-2÷10-3 с. Стабилизацию и закалку продуктов окисления осуществляют охлаждением, адиабатически их расширяя. Одновременно утилизуют кинетическую энергию газов окисления, направляя ее на поддержание процесса. После стабилизации и закалки продукты окисления выводят из реактора и выделяют из них целевые фракции органических кислот и/или индивидуальные кислоты.

Технический результат предлагаемого способа можно показать на следующем примере. В качестве сырья для получения органических кислот был взят бурый уголь Сергеевского месторождения Амурской области с характеристиками, приведенными в таблице 3. Экстракцию гуминовых веществ, слив и формирование суспензии осуществляли по предлагаемому способу. В сливе содержание ОВ оказалось равным 54,8% от массы угля, а в осадке оказалось балласта 45,2% от общей массы угля, что близко к расчетным значениям таблицы 3.

В качестве реактора окисления используем дизельный двигатель Д-240 трактора МТ3-80, снабдив его внешним постоянным приводом вращения коленчатого вала и топливным насосом высокого давления с возможным расходом окисляемой суспензии 50 кг/ч.

При скорости вращения вала 600 об/мин, коэффициенте наполнения цилиндров 0,78 и их объеме 4,75 литров за 5 часов вращения вала будет «прокачано» 333450 л воздуха и израсходовано 250 кг суспензии.

Работу адиабатического сжатия одного моля воздуха рассчитаем по формуле

,

где R – универсальная газовая постоянная,

Т1 – температура сжимаемого воздуха (300K),

n – степень сжатия, равная 16,

– показатель адиабаты, равный 1,4.

Работа сжатия 1 моля воздуха: А=-12652 Дж.

Удельная энтальпия кипящей воды в интервале температур 474,4÷523,3K и давлении 1,6-4,0 МПа составляет 858,6÷1087,5 Дж/г.

Минимальное количество воды, которое можно распылить в 333450 л исходного воздуха для соблюдения термобарических условий окисления будет равно:

333450 л: 22,41 л/моль × 12652 Дж/моль: 1087,5 Дж/г=173,1 кг; а максимальное – 219,3 кг. Отсюда содержание воды в суспензии можно менять от 69,2 до 87,2%. В прототипе рекомендуют суспензию состава: 100 г/л ОВ и 50 г/л NaOH, остальное – вода.

По условиям ведения процесса в прототипе масса ОВ в суспензии для окисления 333450 литрами воздуха должна быть равна 26676÷33345 г при расходе воздуха 10-12 л/г, объем суспензии будет равен 266,76÷333,4 литрам. Объем реактора должен быть равен 533-667 литров, т.к. его заполняют на 50% объема.

В дизельном двигателе массу окисленных ОВ за 5 часов можно менять от 32,5 до 64,2 кг. Длительность впрыска при секторе впрыска 32° будет равна 8,9×10-3 с, окисления при секторе 60° – 16×10-2 c, а стабилизации и закалки – 3,8×10-2 с. Всего 0,063 с.

Характеристика полученного технического результата предлагаемого изобретения в сравнении с прототипом отражена в таблице 4.

Таблица 4
Показатели окисления суспензии в дизельном двигателе Д-240 в сравнении с прототипом
№ п.п. Показатели Двигатель Д-240 Способ по прототипу
1 Масса используемого угля, кг 140 140
в т.ч. перерабатываемого на кислоты в реакторе, кг 40-65 140
2 Объем воздуха при 300К за 5 часов окисления, дм 333450 333450
3 Состав суспензии, мас.%
ОВ 15-25 10
NaOH 3-5 5
Вода Остальное Остальное
Отношение OB/NaOH 5 2
4 Масса ОВ в окисляемой суспензии, кг 38,5-64,2 26,7-33,3
5 Периодичность загрузки Не лимитируется 5 часов и более
6 Объем реактора окисления, дм3 4,75 670
7 Теоретический баланс энергии по энергии газов, МДж:
Компрессия -188,2 -108,7
Утилизация +108,7
Баланс -79,5 -108,7

Как предварительное получение безбалластной суспензии, исключающей из процесса 54% инертных веществ, так и окисление в переменных термобарических условиях имеют преимущество перед прототипом и аналогами в уменьшении расхода NaOH, воздуха и энергии для окисления.

Формула изобретения

1. Способ получения органических кислот, включающий дробление угля или торфа, приготовление водно-щелочной суспензии, периодическое заполнение реактора окисления, нагрев суспензии в реакторе, окисление ее кислородом воздуха при повышенных термобарических условиях, охлаждение продуктов окисления, вывод их из реактора и выделение целевых кислот, отличающийся тем, что для окисления используют безбалластную суспензию, приготовленную кипячением смеси сухого угля или торфа, NaOH и воды, охлаждением указанной смеси, отстаиванием, сливом с осадка, сгущением слива и при необходимости добавлением NaOH, причем безбалластная суспензия имеет следующий состав: органические вещества угля или торфа – 15-25%, NaOH – 3,5-5%, остальное – вода, суспензию впрыскивают в реактор в объем адиабатически сжатого в 14-21 раз воздуха до давления 3,5-5,5 МПа и адиабатически разогретого до 700-900°K на время 10-2– 10-3 с из расчета 1 г органических веществ суспензии на 1,2 и более литров воздуха при нормальных условиях, затем осуществляют стабилизацию и закалку продуктов окисления адиабатически их расширяя, стабилизованные и закаленные продукты окисления выводят из реактора и выделяют из них целевые кислоты или их фракции.

2. Устройство для осуществления способа получения органических кислот по п.1, включающее дизельный двигатель, работающий по 2-х или 4-х тактному циклу, отличающееся тем, что в качестве реактора используют дизельный двигатель, дополнительно имеющий внешний постоянный привод коленчатого вала, топливный насос и форсунки, а топливный насос и форсунки обеспечивают распыление суспензии из расчета 1 г органических веществ на 1,2 и более литров воздуха при нормальных условиях.

Categories: BD_2342000-2342999