Патент на изобретение №2162116
|
||||||||||||||||||||||||||
(54) СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ
(57) Реферат: Изобретение относится к средствам защиты нефтепромыслового оборудования от сероводородной и углекислотной коррозии и может быть использовано в нефтедобывающей промышленности. Технический результат – разработка способа получения ингибитора, обладающего высокими ингибирующими свойствами. Ингибитор коррозии получают путем последовательного смешивания продукта взаимодействия оксиэтилированного моноалкилфенола или оксиэтилированного жирного спирта с фосфорсодержащим соединением и амином в растворителе – 50-80 мас.% с продуктом взаимодействия органической кислоты с амином в растворителе – 10-30 мас.% и неионогенным поверхностно-активным веществом – остальное. Полученный ингибитор обладает высокими ингибирующими свойствами в углекислотных средах. 3 табл. Изобретение относится к области ингибиторной защиты от коррозии металлического оборудования, эксплуатируемого в углекислотных или в сероводородсодержащих минерализованных водных средах, а также при совместном содержании в водах углекислоты и сероводорода, и может быть использовано, например, при добыче и транспорте высокообводненной нефтяной эмульсии или при утилизации нефтепромысловых сточных вод по технологии непрерывного или периодического дозирования. Известен способ получения ингибитора коррозии в водных средах, включающий взаимодействие фосфорной кислоты с диметиламинометилфенолом и воды (авт. св. N 1081278, C 23 F 11/00, 1994). Ингибитор недостаточно эффективен в сероводород- и углекислотных средах при высоких дозировках (75 мг/л). Кроме того он имеет высокую температуру застывания. Известен способ получения ингибитора коррозии в водных средах, включающий взаимодействие соединения жирного ряда с фосфористой кислотой при повышенной температуре с последующим взаимодействием полученного продукта с этаноламином (заявка N 94033303/02, C 23 F 11/126, БИ N 19, 1966). Известный ингибитор недостаточно эффективен в водной среде при совместном содержании в воде углекислоты и сероводорода. Кроме того, в водных средах с высокой минерализацией эффективность ингибитора резко снижается. Наиболее близким к изобретению является способ получения ингибитора коррозии, включающий взаимодействие оксиэтилированного моноалкилфенола с фосфорсодержащим органическим соединением и амином в растворителе (патент 2113543, C 23 F 11/14, БИ N 17, 1998 г.), который может быть принят в качестве прототипа. Недостатком прототипа является невысокая эффективность в углекислотных средах. В основу настоящего изобретения поставлена задача создания способа получения ингибитора коррозии, обладающего высоким эффектом защиты от углекислотной коррозии. Поставленная изобретением задача решается тем, что в способе получения ингибитора коррозии на основе продукта взаимодействия оксиэтилированного моноалкилфенола или оксиэтилированного жирного спирта с фосфорсодержащим соединением и амином в растворителе указанный продукт взаимодействия смешивают путем последовательного добавления с продуктом взаимодействия органической кислоты с амином в растворителе и неионогенным поверхностно-активным веществом при следующем соотношении компонентов, мас.%: Продукт взаимодействия оксиэтилированного моноалкилфенола или оксиэтилированного жирного спирта с форсфорсодержащим соединением и амином – 50-80 Продукт взаимодействия органической кислоты с амином в растворителе – 10-30 Неионогенное поверхностно-активное вещество – Остальное Продукт взаимодействия оксиэтилированного моноалкилфенола или оксиэтилированного жирного спирта с фосфорсодержащим соединением получают смещением их при T = 120-150oC с последующим взаимодействием полученного продукта с амином, взятых в мольном соотношении 1 : 0,8 – 1,2 : 0,8 – 1,2 соответственно (активная основа ПВ-1), с последующим растворением его в алифатических спиртах или в смеси алифатических спиртов с водой и при соотношении, мас.% (патент 2113543, C 23 F 11/14, БИ N 17, 1998 г.): Активная основа ПВ-1 – 20-50 Растворитель – Остальное (табл. 1) Для получения ПВ-1: в качестве фосфорсодержащето соединения используют диметилфосфит по ТУ 6-36-5763445-6-88, или монометилфосфит, или треххлористый фосор; в качестве оксиэтилированного моноалкилфенола используют моноалкилфенолы на основе тримеров пропилена – неонолы АФ9-4, 6, 10, 12 по ТУ 2483-077-05766801-98 или оксиэтилированные алкилфенолы на основе полимердистиллята ОП-4, 7, 10 с алкилом C8-C10 и числом оксиэтильных групп, равным соответственно 4, 7, 10 по ГОСТ 8433-81; в качестве высшего жирного спирта используются спирты синтетические первичные высшие фракции C8-C19 по ТУ 38.107119-85 с изв. N 1-3; в качестве аминов используют моноэтаноламин общей формулы H8-nN(C2H4OH)n, где n = 1, 2, 3, представляющие собой моно-, ди-, триэтаноламины; в качестве растворителя берут алифатический спирт (метиловый, этиловый, изопропиловый или бутиловый) или их смесь, или смесь алифатического спирта с водой (таблица 1). Пример получения продукта взаимодействия ПВ-1. К 177,4 г неонола АФ9-6 добавляют 41,6 г диметилфосфита и нагревают реакционную массу до 120oC, отгоняют метанол продувкой азота. Далее при перемешивании к реакционной массе последовательно добавляют 6,7 г воды, 45,5 г триэтаноламина до получения однородной массы, 40 г полученной активной основы растворяют в смеси 45 г метанола и 15 г воды (см. п. 7, таблица 1). Примеры приготовления ПВ-1 N 1-6 и 8-11 осуществляют аналогично ПВ-1-7, изменяя качественный состав исходных компонентов и их количества (см. табл. 1). ПВ-1 представляет собой однородную жидкость от желтого до светло-коричневого цвета. Продукт взаимодействия органических кислот с амином в растворителе (ПВ-2) получают при следующем соотношении исходных компонентов, мас.%: Органические кислоты – 20-50 Амины – 5-10 Ароматический растворитель – Остальное Для получения ПВ-2 в качестве органических кислот используют талловое масло, представляющее смесь жирных и смоляных карбоновых кислот (Химический энциклопедический словарь, под. ред. И.Л. Кнунянца. М.: Советская энциклопедия, 1983, стр. 558), или олеиновую кислоту по ГОСТ 7580-91, или олеин технический по ТУ 9145-012-00336444-96, или синтетические жирные кислоты по ГОСТ 23239-89 с изв. 1; в качестве амина используют или полиэтиленполиамин технический по ТУ 6-02-594-85 или этилендиамин по ТУ 6-02-622-86, или цианэтилированный этилендиамин по ТУ 86У227-05-89, или диэтилентриамин технический по ТУ 6-02-9814-86, или моноэтаноламин по ТУ 6-02-915-84, или жирные амины фракции C10-C16 по ТУ 113-03/0203796-18-92; в качестве растворителя берут ароматические углеводороды сольвент нефтяной тяжелый (нефрас А120/200 или А150/330) по ТУ 39-101809-90 или этилбензольную фракцию (ЭБФ) по ТУ 2414-015-05757601-98, или толуол технический по ГОСТ 14710-78 с изв. 1-4, или смесь ароматических углеводородов с алифатическими спиртами: этанол, метанол, кубовые остатки производства бутиловых спиртов (КОПБС) по ТУ 38.102.167-85 (табл. 2). В качестве НПАВ используют неонол марки АФ9-6 или АФ9-12 по ТУ 2483-077-05766801-98, или моноалкиловый эфир полиэтиленгликоля на основе высших жирных спиртов – синтанол АЛМ-10 по ТУ 6-4-864-88, или оксиэтилированные алкилфенолы на основе полимердистиллята ОП-7, 10 по ГОСТ 8433-81. Пример получения продукта взаимодействия ПВ-2. В реактор загружают 90 г таллового масла и 21 г полиэтиленполиамида. Смесь нагревают до 120oC и перемешивают в течение двух часов, одновременно отгоняя воду, выделяющуюся в процессе реакции. Полученный продукт охлаждают до 40oC и вводят нефрас А120/200 в количестве 189 г. Смесь перемешивают в течение 0,5 часа (см. п. 12 табл. 2). Примеры приготовления ПВ-2 N 1-11 осуществляют аналогично ПВ-2-12, изменяя качественный состав исходных и их количества (см. табл. 2). ПВ-2 представляет собой однородную жидкость темно-коричневого цвета. Анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике нет объектов, идентичных по заявляемой совокупности признаков и наличию вышеуказанных свойств и преимуществ, что позволяет сделать вывод о соответствии изобретения критериям “новизна” и “изобретательский уровень”. Предлагаемый ингибитор готовят путем последовательного смешения в указанных соотношениях ПВ-1 с ПВ-2 в течение 0,5-1 часа при постоянном перемешивании при температуре 20-40oC. К полученной смеси вводится расчетное количество НПАВ с последующим перемешиванием до получения однородной массы. Пример 1 (предлагаемый ингибитор). Берут 80 г ПВ-1-1, добавляют последовательно 10 г ПВ-2-10, перемешивают. К полученной смеси добавляют 10 г ПАВ-АЛМ-10 и тщательно перемешивают до получения однородной массы. Примеры 2-20 приготовления заявленного ингибитора осуществляют аналогично примеру 1, изменяя исходные компоненты и их количества (табл. 3). Полученные ингибиторы испытывают в минерализованных водных средах, содержащих углекислый газ или сероводород. Полученные ингибиторы по приведенному выше способу – жидкость темно-коричневого цвета с температурой застывания от -40oC до -60oC. Защитный эффект предлагаемого ингибитора коррозии определяют в модели сточной воды, содержащей 100 мг/дм3 сероводорода, и в 3% растворе NaCl, содержащем 1000 мг/дм3 CO2, по ОСТ 39-099-79 “Ингибиторы коррозии. Методы оценки защитного действия ингибиторов коррозии в нефтепромысловых сточных средах”. Результаты испытаний представлены в таблице 3. Из представленных в таблице 3 данных видно, что получаемый заявленным способом ингибитор коррозии обладает высоким эффектом ингибирования в минерализованных водных средах, содержащих углекислоту или сероводород, и по сравнению с прототипом является более эффективным реагентом. Формула изобретения
Продукт взаимодействия оксиэтилированного моноалкилфенола или оксиэтилированного жирного спирта с фосфорсодержащим соединением и амином в растворителе – 50 – 80 Продукт взаимодействия органической кислоты с амином в растворителе – 10 – 30 Неионогенное поверхностно-активное вещество – Остальное РИСУНКИ
|
||||||||||||||||||||||||||