|
(21), (22) Заявка: 2007140364/09, 31.10.2007
(24) Дата начала отсчета срока действия патента:
31.10.2007
(46) Опубликовано: 20.12.2008
(56) Список документов, цитированных в отчете о поиске:
RU 2280657 С1, 27.07.2006. RU 2240616 С2, 20.05.2004. RU 2082239 C1, 20.06.1997. RU 2057740 С1, 10.04.1996. JP 2006165349 А, 22.06.2006. US 2004046636 А, 11.03.2004. JP 62134270 А, 17.06.1987.
Адрес для переписки:
634021, г.Томск, пр. Академический, 10/3, отдел структурной макрокинетики ТНЦ СО РАН
|
(72) Автор(ы):
Лепакова Ольга Клавдиевна (RU), Голобоков Николай Николаевич (RU), Китлер Владимир Давыдович (RU), Шульпеков Александр Михайлович (RU), Максимов Юрий Михайлович (RU)
(73) Патентообладатель(и):
ТОМСКИЙ НАУЧНЫЙ ЦЕНТР СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ТНЦ СО РАН) (RU)
|
(54) ЭЛЕКТРОПРОВОДЯЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ, ШИХТА ДЛЯ ЕГО ПОЛУЧЕНИЯ И ЭЛЕКТРОПРОВОДЯЩАЯ КОМПОЗИЦИЯ
(57) Реферат:
Изобретение относится к электротехнической промышленности и может быть использовано для изготовления электропроводящих покрытий резистивных нагревательных элементов. Электропроводящий композиционный материал содержит, мас.%: карбосилицид титана Ti3SiC2 – 89-93, карбид титана TiC – 4-6 и фазу на основе железа – остальное. Для получения заявляемого электропроводящего композиционного материала используют шихту, содержащую, мас.%: ферросилиций 17-21, титан 67-70 и углерод 12-13. Электропроводящая композиция содержит заявляемый электропроводящий композиционный материал 30-80 мас.% и связующее, в качестве которого используют кремнийорганическое соединение в количестве 20-70 мас.%. Техническим результатом изобретения является снижение стоимости материала и композиции в целом в связи с использованием дешевого ферросилиция либо отходов ферросплавного производства, а также и то, что покрытия на основе карбосилицида титана обладают более высокой температурной стабильностью. 3 н.п. ф-лы, 1 ил.
Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении электропроводящих покрытий резистивных нагревательных элементов.
Известна электропроводящая резистивная композиция содержащая распределенные в полимерном связующем частицы электропроводящего вещества, электроизолирующее вещество и вещество, регулирующее температурный коэффициент сопротивления. В качестве электропроводящего вещества используют смесь пиролитического графита и никеля (25 и 75 мас.% соответственно), в качестве полимерного связующего и электроизолирующего вещества используют термостойкие полимеры (фторопласты, полиимиды, полиамиды, полиорганосилоксаны) (патент РФ №2240616, МПК Н01С 7/00, 2004).
Недостатком известного материала является сложный состав композиции, необходимость использования мелкодисперсных порошков. Кроме того, использование в качестве одного из электропроводящих компонентов – никеля (до 75 мас.%) повышает стоимость композиции в целом.
Известна также электропроводящая композиция для резистивного нагревательного элемента, содержащая распределенные в полимерном связующем частицы электропроводящего вещества, состоящего из силицида хрома, силицида марганца, силицида железа, нитрида хрома или их смеси, и частицы электроизолирующего вещества. В качестве полимерного связующего использованы полиуретаны, полиимиды, полиамиды органосилоксаны, термопластичные полимеры (патент РФ №2082239, МПК Н01С 7/00, 1997).
Недостатком данной электропроводящей композиции является то, что она представляет собой механическую смесь компонентов. Важным обстоятельством во всех случаях приготовления указанной композиции является обеспечение равномерного распределения в полимерном связующем частиц электропроводящего и электроизолирующего веществ, для чего необходимо соблюдать зерновой состав смешиваемых компонентов с учетом их плотностей.
Наиболее близкими к заявляемому изобретению являются шихта, электропроводящий материал и электропроводящая полимерная композиция (патент РФ №2280657, МПК C08L 79/08, 2006).
Шихта для получения карбида титана, использованного в качестве проводящего компонента электропроводящего материала, состоит из порошкообразного губчатого титана марки ПТМ и сажи ПМ-50. Нестехиометрический карбид титана получают в режиме самораспространяющегося высокотемпературного синтеза (СВС). Для осуществления СВС порошок титана с сажей смешивают в мольном соотношении 1:n, где 0n1, в шаровой мельнице в течение 0,5-1,0 часа. Из полученной смеси прессуют таблетки диаметром 1-2 см и высотой 3-5 см, которые затем сжигают в токе аргона. Полученные материалы измельчают в шаровой мельнице и отбирают фракцию с диаметром частиц меньше 100 мкм.
Электропроводящий полимерный материал получают следующим образом: сначала отдельно смешивают 2/3 полимерного связующего с углеродным наполнителем и оставшуюся 1/3 часть полимерного связующего с карбидом титана. В качестве полимерного связующего используют полиамидное связующее ПАИС-104. Затем проводят горячее прессование и отверждение первой смеси, которую подвергают измельчению, и после измельчения смешивают со второй смесью и проводят окончательное отверждение материала.
Недостатками композиции являются трудоемкость изготовления, необходимость использования специального оборудования. При приготовлении электропроводящей композиции из компонентов, имеющих разную плотность, необходимо обеспечить их равномерное распределение. Кроме того, использованное в изобретении полимерное связующее имеет недостаточно высокую теплостойкость (не более 200-250°С). Нестехиометрический карбид титана имеет большую склонность к окислению при температуре эксплуатации композиции. Это приводит к тому, что при температурах выше 250°С электрическое сопротивление покрытий, содержащих карбид титана, резко возрастает.
Задачей изобретения является получение нового электропроводящего композиционного материала с высокой стабильностью электрического сопротивления при одновременном снижении стоимости материала.
Задача изобретения решается следующим образом. Методом СВС синтезируют электропроводящий композиционный материал на основе карбосилицида титана Ti3SiC2 следующего состава, мас.%:
Ti3SiC2 |
89-93 |
TiC |
4-6 |
фаза на основе железа |
остальное. |
Причем состав электропроводящего композиционного материала задается составом шихты, состоящей из порошков промышленного ферросилиция (марки ФС-75), титана (ПТС) и углерода (сажа марки ПМ-15), взятых в следующих количествах, мас.%:
ФС-75 |
17-21 |
Ti |
67-70 |
С |
12-13. |
Предельные составы шихты установлены экспериментально и обусловлены максимальным содержанием в синтезированном продукте карбосилицида титана. Основным параметром, определяющим состав электропроводящего композиционного материала на основе Ti3SiC2, является содержание в шихте ферросилиция ФС-75, а отношение количества титана к углероду поддерживается постоянным и составляет Ti:C5.5. При содержании в шихте ферросилиция ФС-75 менее 17 мас.% в процессе синтеза формируется композит на основе карбида титана, и электропроводящая композиция в целом характеризуется более низкой температурной стабильностью электрического сопротивления по сравнению с заявляемым составом. При содержании в шихте ферросилиция ФС-75 более 21 мас.% синтезируется композит, который в своем составе дополнительно содержит карбид кремния, что приводит к ухудшению технологических показателей электропроводящей композиции в целом. Продукт, сформировавшийся в процессе синтеза, состоит из равномерно распределенных в объеме материала следующих структурных составляющих: карбосилицида титана (Ti3SiC2), составляющего основу материала, карбида титана (TiC) и фазы на основе железа. Таким образом, отпадает необходимость в тщательном перемешивании отдельных компонентов с целью их равномерного распределения между собой, а также в полимерном связующем. Поскольку основной фазой в заявленном материале является карбосилицид титана Ti3SiC2, а на долю карбида титана приходится не более 10 мас.%, то, как показали исследования, покрытия на основе Ti3SiC2 обладают более высокой температурной стабильностью электрического сопротивления по сравнению с покрытиями на основе карбида титана.
Важно, что для синтеза материала используют дешевый, по сравнению с чистыми элементами, промышленный ферросилиций или отходы ферросплавного производства.
Далее полученный композиционный материал на основе Ti3SiC2 смешивают с 40%-ным раствором кремнийорганического полимерного связующего в количестве 30-70 мас.%. Полученную суспензию с помощью кисти, валика или краскопульта наносят на подложки с нанесенными металлическими электродами, высушивают на воздухе при комнатной температуре и обжигают при температуре 250-350°С. Измерения электрического сопротивления покрытий проводят с помощью омметра Ф-400. Для приготовления суспензии и получения электропроводящего покрытия используют широко распространенное оборудование, применяемое для лакокрасочных работ. Используемые в изобретении кремнийорганические полимерные связующие характеризуются боле высокой теплостойкостью по сравнению с полиамидным полимерным связующим прототипа.
При увеличении количества полимерного связующего более 70 мас.% покрытие имеет недостаточно высокую электропроводность для его использования в качестве резистивного слоя нагревательных элементов.
Уменьшение содержания полимерного связующего (менее 20 мас.%) не приводит к уменьшению сопротивления, но при этом ухудшаются адгезия, однородность и механическая прочность покрытия.
Следующие примеры поясняют сущность изобретения.
Пример 1. Порошки ферросилиция марки ФС-75 дисперсностью 50-100 мкм, титана (ПТС) дисперсностью менее 100 мкм и углерода (сажа марки ПМ- 15), взятые в количестве, мас.%: ФС – 75-17, Ti – 70, С – 13, тщательно перемешивают, прессуют в форме цилиндров при небольшом давлении 5-10 атм, помещают в реактор и осуществляют поджиг реакционной смеси с помощью спирали из вольфрамовой проволоки. Синтез проводят в режиме горения в инертной атмосфере (аргоне при давлении 4-10 атм). После остывания продукт извлекают из реактора. Согласно рентгенофазовому и микроструктурному анализам СВС-продукт представляет собой композиционный материал, состоящий из карбосилицида титана Ti3SiC2 (89 мас.%), карбида титана TiC (6 мас.%) и фазы на основе железа (5 мас.%). Согласно микроструктурному анализу продукт представляет композит, основу которого составляет карбосилицид титана, а TiC и фаза на основе железа равномерно распределены в объеме материала. Таким образом, в процессе синтеза сформировался готовый композит с равномерным распределением структурных составляющих. Продукт, благодаря тому что основу его составляет карбосилицид титана, легко измельчается до дисперсности менее 50 мкм. Полученный порошок смешивают с 40%-ным раствором полимерного связующего в соотношении 30 мас.% полимерного связующего (в пересчете на сухой остаток) и 70 мас.% композита на основе Ti3SiC2. Полученную суспензию с помощью кисти, валика или краскопульта наносят на подложки с нанесенными металлическими электродами, высушивают на воздухе при комнатной температуре и обжигают при температуре 350°С и далее проводят измерения электрического сопротивления. Электрическое сопротивление образцов измеряют с помощью омметра Ф-400. Электрическое сопротивление данной композиции составляет 30 Ом/ (термообработка 350°С).
Пример 2. Готовят шихту следующего состава, мас.%: ФС – 75-21, Ti – 67, С – 12. Синтез проводят так же, как и в примере 1. В результате синтеза получают продукт следующего состава: Ti3SiC2 (93 мас.%), TiC (4 мас.%), фаза на основе железа (3 мас.%). Продукт легко измельчается до дисперсности менее 50 мкм. Полученный порошок смешивают с 40%-ным раствором полимерного связующего в соотношении 30 мас.% полимерного связующего (в пересчете на сухой остаток) и 70 мас.% композита на основе Ti3SiC2. Полученную суспензию с помощью кисти, валика или краскопульта наносят на подложки с нанесенными металлическими электродами, высушивают на воздухе при комнатной температуре и обжигают при температуре 350°С и далее проводят измерения электрического сопротивления. Электрическое сопротивление данной композиции составляет 20 Ом/ (термообработка 350°C).
Таким образом, применение композиционного материала на основе Ti3SiC2 и полимерного связующего (в указанных в изобретении пределах) позволяет получить материал с электропроводностью, меняющейся в широких пределах (20-5000 Ом/). Электропроводящая полимерная композиция характеризуется высокой температурной стабильностью по сравнению с прототипом (материал на основе TiC) (см. чертеж). Кроме того, для синтеза композита на основе Ti3SiC2 используют дешевое сырье (промышленный ферросилиций, отходы ферросплавного производства).
Формула изобретения
1. Электропроводящий композиционный материал, содержащий карбид титана, отличающийся тем, что он дополнительно содержит карбосилицид титана Ti3SiC2 и фазу на основе железа при следующих количествах компонентов, мас.%:
Ti3SiC2 |
89-93 |
TiC |
4-6 |
фаза на основе Fe |
остальное |
2. Шихта для получения электропроводящего композиционного материала, содержащая титан и углерод, отличающаяся тем, что она дополнительно содержит ферросилиций при следующем соотношении компонентов, мас.%:
ферросилиций |
17-21 |
титан |
67-70 |
углерод |
12-13 |
3. Электропроводящая композиция, содержащая электропроводящий материал и связующее, отличающаяся тем, что в качестве электропроводящего материала она содержит материал по п.1, в качестве связующего – кремнийорганическое соединение при следующем соотношении компонентов, мас.%:
электропроводящий композиционный |
|
материал на основе Ti3SiC2 |
30-80 |
кремнийорганическое соединение |
20-70 |
РИСУНКИ
|
|