Патент на изобретение №2341074

Published by on




РОССИЙСКАЯ ФЕДЕРАЦИЯ



ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ,
ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ
(19) RU (11) 2341074 (13) C1
(51) МПК

A01G25/02 (2006.01)

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Статус: по данным на 08.10.2010 – может прекратить свое действие

(21), (22) Заявка: 2007123929/12, 25.06.2007

(24) Дата начала отсчета срока действия патента:

25.06.2007

(46) Опубликовано: 20.12.2008

(56) Список документов, цитированных в отчете о
поиске:
RU 2280977 C1, 10.08.2006. US 4047995 A, 13.09.1977. US 3896999 A, 29.07.1975. US 4173309 A, 06.11.1979.

Адрес для переписки:

400059, г.Волгоград, 59, ул. Изоляторная, 2, кв.89, А.М. Салдаеву

(72) Автор(ы):

Овчинников Алексей Семенович (RU),
Салдаев Александр Макарович (RU),
Мещеряков Максим Павлович (RU),
Бочарников Виктор Сергеевич (RU),
Бородычев Виктор Владимирович (RU)

(73) Патентообладатель(и):

Федеральное государственное учреждение высшего профессионального образования “Волгоградская государственная сельскохозяйственная академия” (RU)

(54) ПОЛИВНАЯ ТРУБКА ДЛЯ КАПЕЛЬНОГО ОРОШЕНИЯ

(57) Реферат:

Изобретение относится к сельскому хозяйству, в частности к орошаемому земледелию, и может быть использовано в оросительных системах поверхностного полива. Поливная трубка для капельного орошения содержит каналы для подачи воды, выполненные в виде лабиринта зигзагообразной формы, основную и вторичную капельницы. Капельницы гидравлически связаны посредством соединительных элементов, установленных к вершинам зигзага, разнесенные впускные каналы и водовыпуски. Каждый лабиринт зигзагообразной формы выполнен в виде канала с переменным живым сечением. Осевая линия канала по длине лабиринта описана простейшей периодической функцией, например синусоидой, вида y=Asin(x+Y), где А – амплитуда; – частота; Y – фаза, а Т=2/ – период; x и у – абсцисса и ордината в системе Декартовых координат ХОУ. Минимальные живые сечения канала в виде полого круга выполнены в точках пересечений с осью абсцисс. Максимальные живые сечения канала в виде полого эллипса – в точках наибольшей амплитуды. Заявленное изобретение обеспечивает равномерную выдачу поливных норм в каждой капельнице по длине поливной трубки. 3 ил.

Изобретение относится к сельскому хозяйству, в частности к орошаемому земледелию, и может быть использовано в оросительных системах поверхностного полива для возделывания овощных культур.

Известен водовыпуск поливного трубопровода, включающий корпус со сливным отверстием и крепежный элемент, соединяющий корпус с трубопроводом, в котором, с целью повышения эксплуатационной надежности, корпус образован двумя боковинами, соединенными сводом, состоящим из передней горизонтальной части и плавно сопряженной с ней криволинейной части, направленной выпуклостью наружу, при этом выпускное отверстие корпуса размещено в нем напротив криволинейной части свода; крепежные элементы выполнены в виде пластины, размещенной с внутренней стороны трубопровода и соединенной с последним ее корпусом посредством винтов, выполненных впотай, при этом пластина снабжена выступом с косым срезом, расположенным за впускным отверстием (SU, авторское свидетельство №1501981 А1. М.кл.4

К недостаткам описанного поливного трубопровода относятся нетехнологичность изготовления, высокая себестоимость 1 погонного метра трубопровода, большие затраты ручного труда, связанные со сборкой, большие затраты на раскладку поливного трубопровода, забиваемость почвой водовыпускных отверстий.

К недостаткам описанного способа изготовления поливной трубки для капельного орошения относятся то, что норма выпуска воды в каждой последующей капельнице от установленной нормы (например, 4 л/ч) разнятся от 18 до 42%. Это вызвано тем, что линейная скорость вращения ведомого барабана не соответствует линейной скорости ведущего барабана. Сформированные лабиринтные каналы при наложении перед сваркой профильных контуров ведущим и ведомым барабанами смещаются вдоль поливной трубки. Этим изменяются “живые” сечения лабиринтных каналов и тем самым не обеспечивается заданная норма расхода оросительной воды в каждой последующей встроенной капельнице.

К недостаткам описанной поливной трубки для капельного орошения, принятой нами в качестве наиближайшего аналога, относятся высокая степень неравномерности расхода поливной воды капельницами по длине поливной трубки.

Сущность заявленного изобретения заключается в следующем.

Задача, на решение которой направлено заявленное изобретение, – повышение эксплуатационной надежности капельного орошения.

Технический результат – снижение степени неравномерности выдачи поливных норм капельницей по длине поливной трубки.

Указанный технический результат достигается тем, что в известной поливной трубке капельного орошения, включающей канал для подачи воды, выполненный в виде лабиринта зигзагообразной формы, основную и вторичную капельницы, гидравлически связанные посредством соединительных элементов, установленных к внутренним вершинам зигзага, разнесенные впускные каналы и водовыпуски, согласно изобретения каждый лабиринт зигзагообразной формы выполнен в виде канала с переменным живым сечением, осевая линия канала по длине лабиринта описана простейшей периодической функцией, например синусоидой, вида y=Asin(x+Y), где А – амплитуда; – частота; Y – фаза, а Т=2/ – период; x и у – абсцисса и ордината в системе Декартовых координат ХОУ, при этом минимальные живые сечения канала в виде полого круга выполнены в точках пересечений с осью абсцисс, а максимальные живые сечения канала в виде полого эллипса – в точках наибольшей амплитуды.

Изобретение поясняется чертежами.

На фиг.1 представлена поливная труба, поперечный разрез.

На фиг.2 – сечение А-А на фиг.1, диаметральный разрез в плоскости наложения основной и вторичной капельниц.

На фиг.3 – место Б на фиг.2, фрагмент канала основной капельницы с переменным живым сечением с наложенными сечениями канала в увеличенном масштабе.

Сведения, подтверждающие возможность реализации заявленного изобретения, заключатся в следующем.

Поливная трубка для капельного орошения содержит канал 1 для подачи воды, основную капельницу 2, вторичную капельницу 3, соединительные элементы 4, впускные каналы 5 и водовыпуски 6.

Канал 1 (см. фиг.1) в виде полых овала или круга выполнен из ленты 7 термопласта, например полиолефина радиационного модифицированного, с последующей контактной сваркой соединяемых кромок.

Основная капельница 2 и вторичная капельница 3 выполнены в виде лабиринта зигзагообразной формы. Капельницы 2 и 3 гидравлически связаны посредством соединительных элементов 4. Соединительные элементы 4 установлены к внутренним вершинам 8 и 9 и внешним вершинам 10 и 11 зигзагов (см. фиг.2).

Каждый лабиринт зигзагообразной формы (см. фиг.3) выполнен в виде водопроводящего канала 12 с переменным живым сечением. Осевая линия 13 канала 12 по длине лабиринта описана простейшей периодической функцией, например синусоидой, вида

где А – амплитуда;

– частота;

Y – фаза,

x и у – абсцисса и ордината в системе Декартовых координат ХОУ.

Период размещения зигзагов по длине основной капельницы 2 и вторичной капельницы 3:

Количество периодов (число зигзагов) по длине основной капельницы 2 и вторичной капельницы 3 выполнено равным и не кратно целым числам.

Минимальные живые сечения (F1=d2/4) (см. фиг.3) канала 12 в виде полого круга диаметром d выполнены в точках пересечений с осью ОХ на длине l канала 12.

Максимальные живые сечения (Fi=f(m;n)) канала в виде полого эллипса с осями m и n размещены по оси OY в точках между амплитудами Аmax и Аmin.

Диаметр d круглого отверстия на участке l канала 12 выполнен в 1,5…2,0 раза больше допустимого размера взвешенных твердых частиц в поливной воде, поступившей в канал 1 после тонкой очистки.

Длина суженной части канала 12 в 4…8 раз больше диаметра d.

Поливная трубка для капельного орошения работает следующим образом.

Оросительная вода в канал 1 поступает под давлением 0,01…0,02 МПа. За счет этого часть воды по впускным каналам 5, размещенным по вершинам 10 и 8 зигзагов канала 12, направляется в основную капельницу 2. Из основной капельницы 2 благодаря соединительным элементам 4 масса воды направляется во вторичную капельницу 3. При полном гашении энергии воды из вторичной капельницы 3 она по водовыпускам 6 в виде капель только за счет гравитационной силы падает (стекает) на поверхность орошаемого участка.

Ламинарный поток оросительной воды из впускных каналов 5 направляется в канал 12, осевая линия каждого имеет форму синусоиды (см. фиг.3). На вершинах 8 и 10 зигзагов канал имеет наибольшие площади живых сечений Fi. Затем поток воды направляется в суженную часть канала 12. При прохождении суженной части канала 12 диаметром d на длине l поток воды тормозится, происходит гашение скорости. При выходе из суженной части канала 12 поток воды поступает в его расширенную часть – диффузор. В этом случае движение становится турбулентным. Многократное торможение оросительной воды в суженных и расширяющихся местах канала 13 приводит к полному гашению скорости потока воды.

Таким образом, после прохождения основной капельницы 2 поток воды через соединительные элементы 4 попадает во вторичную капельницу 3. После прохождения суженных и расширяющихся частей канала 12 во вторичной капельнице 3 через водовыпуски 6 вода в виде капель плавно поступает на орошаемую поверхность.

Благодаря многократному сжатию и расширению воды в каналах 12 с переменными живыми сечениями достигается гашение скорости потока оросительной воды при минимальных длинах капельниц 2 и 3.

Описанная совокупность существенных отличительных признаков в заявленной поливной трубке капельного орошения обеспечивает достижение технического результата и поставленной задачи.

Формула изобретения

Поливная трубка для капельного орошения, содержащая каналы для подачи воды, выполненные в виде лабиринта зигзагообразной формы, основную и вторичную капельницы, гидравлически связанные посредством соединительных элементов, установленных к вершинам зигзага, разнесенные впускные каналы и водовыпуски, отличающаяся тем, что каждый лабиринт зигзагообразной формы выполнен в виде канала с переменным живым сечением, осевая линия канала по длине лабиринта описана простейшей периодической функцией, например синусоидой, вида y=Asin(x+Y) с периодом Т=2/, где А – амплитуда; – частота; Y – фаза; x и у – абсцисса и ордината в системе Декартовых координат XOY, при этом минимальные живые сечения канала в виде полого круга выполнены в точках пересечений с осью абсцисс, а максимальные живые сечения канала в виде полого эллипса – в точках наибольшей амплитуды.

РИСУНКИ

Categories: BD_2341000-2341999